
Nifty Assignments
Nick Parlante (moderator)

Stanford University
nick.parlante@cs.stanford.edu

David Reed
Creighton University

davereed@creighton.edu

David Matuszek
University of Pennsylvania

dave@acm.org

John K. Estell
Ohio Northern University

j-estell@onu.edu

Jeff Lehman
Huntington College

jlehman@huntington.edu

Donald Chinn
University of Washington, Tacoma

dchinn@u.washington.edu

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object Oriented
Programming. K.3.0 [Computers and Education]: General.

General Terms
Algorithms, Design, Languages.

Keywords
Education, assignments, homeworks, examples, repository,
library, nifty, object oriented programming, pedagogy, pirate,
cards, minesweeper, recursion.

Introduction
At SIGCSE, we mostly talk at a strategic level about broad ideas
in CS education. Balanced against those important strategic
discussions, we have the simple day-to-day need for quality
assignments in the classroom, and that’s where Nifty Assignments
comes in.

Oftentimes, I like to think that what my students learn stems right
from my explanations and examples in lecture. But one night of
office hours watching them work through an assignment reminds
me that most of the learning happens at those key, difficult-yet-
inescapable points in the assignments. Lecture is left to play its
supporting role of explanation and motivation, but in my heart, I
suspect that lecture is theater compared to the learning that goes
on when the students actually write the code.

Given the crucial role of assignments, I’m perpetually amazed at
what an error prone and time-consuming process it is to put
together a good assignment. The CSE community can be a great
resource for this problem — sharing great assignment ideas and
the materials to make them easy to adopt. That’s what Nifty
Assignments is all about.

Each presenter will introduce their assignment, give a quick
demo, and describe its niche in the curriculum and its strengths
and weaknesses. The presentations (and the descriptions below)
merely introduce each assignment. For more detail, each
assignment has its own web page, available from our home page
http://nifty.stanford.edu, with assignment materials, handouts,
data files, and whatnot. If you have an assignment that works well
and would be of interest to the CSE community, please consider
applying to present at Nifty Assignments. See the
nifty.stanford.edu home page for more information.

Copyright is held by the author/owner(s).
SIGCSE’04, March 3–7, 2004, Norfolk, Virginia, USA.
ACM 1-58113-798-2/04/0003.

David Reed — Talk Like a Pirate (CS0/CS1)
September 19 has been declared International Talk Like a Pirate
Day, an (unofficial) holiday when people around the world are
encouraged to say things like “Arrrr” and “Ahoy, matey”
whenever possible. The Web site www.talklikeapirate.com
contains a simple English-to-Pirate translator, which is
entertaining to students and an inspiration for many nifty
assignments.

In a recent Web-based CS0 course, the translator was used to
motivate discussions on interface design, Web-based
programming, and program extensibility. Initially, students
critiqued the interface provided by the online translator, and
designed a more general interface involving a separate button for
each word or phrase to be translated. Students then implemented
their own translators in the form of embedded JavaScript code in a
Web page, and embellished the translator with special features
(such as randomly inserting “Arrrrs”).

As students extended the vocabulary of their translators, they
quickly recognized the amount of repetition involved. The next
assignment involved using JavaScript to automate the generation
of the buttons. By doing so, students experienced the value of
code factoring and metaprogramming, resulting in a translator that
was easier to extend, debug, and keep consistent.

While these assignments were given in a CS0 course using HTML
and JavaScript, they could easily be adapted to a CS1 course using
the Java GUI. In an applet/application, the user could enter text
and have the program translate using pattern matching and string
substitution. To be robust, regular expressions could be introduced
to allow for context-sensitive searches (such as finding words that
end with “ing”).

David Matuszek — Rabbit Hunt (CS1)
A fox is hunting a rabbit in a field. The field contains a number of
bushes which obstruct both the fox’s view and the rabbit’s view,
so each may or may not be able to see the other. The fox tries to
catch the rabbit; the rabbit tries to get away from the fox. If the
fox can catch the rabbit, he eats it (and wins). If the rabbit can
keep away from the fox for 100 turns, the rabbit wins.

The student is the rabbit. The student’s score on the assignment is
(with minor adjustments) the percentage of times that the rabbit
wins, out of a large number of trials.

As instructor, I provided the framework for the assignment (in
Java, using AWT). The students had to replace one method,
decideMove(), in the Rabbit class. In this method, the student
could have the rabbit look in any of the eight compass directions,
and note what it sees there (fox, bush, edge of field) and how far
away it is. The Fox could do the same.

This assignment is unusual in a number of respects. It is very
visual. There is no algorithm or “solution”—students have to
figure out a strategy and implement it. To do well, students have
to experiment with different strategies. There is a clear incentive
to examine existing code (how the Fox decides its moves).
Students have to decide for themselves when their strategy is
“good enough.”

I found this to be a very engaging assignment, and students who
did well expressed a real sense of accomplishment.

Jeff Lehman – Minesweeper (CS1)
The game of Minesweeper requires a player to determine the
location of “mines” located randomly throughout a two-
dimensional grid or “minefield”. The Minesweeper assignment
grew out of a “never ending quest” to find application areas
beyond the limited complexity and interest of “Fahrenheit to
Celsius” problems. The assignment has evolved to demonstrate
the value of an object-oriented versus a procedural approach and
to illustrate the connection between a graphical user interface and
a supporting class data structure. Variations of the assignment
have been used in our CS1 course (more like CS1.5) using Java
and in a post CS2 course focusing on Visual BASIC.

The “niftiness” of this assignment is that it can be used to cover
and integrate a wide range of programming topics. The
assignment can focus on procedural methods/functions
incorporating two-dimensional array processing and recursion.
Students implement and test methods/functions that support key
elements of a Minesweeper game. The assignment can also focus
on object-oriented design and programming. Students implement
and test a Minesweeper class as a supporting data structure. The
design for the class can be supplied by the instructor or be
incorporated into the assignment. A set of classes can be provided
so that students do not need to implement a GUI to test their
classes. The assignment can be also used to introduce GUI design
and programming where students create a complete user interface
for their Minesweeper class. There are many opportunities for

students to take the assignment “above and beyond” such as
adding a timer, sound, and saving high scores.

John K. Estell — The Card Game Assignment
(CS1-CS2)
Who hasn’t written a card game? However, for most of us
teaching programming courses, our code was written back in the
days of command line input and text-only output. In contrast, our
students have access to nifty graphical user interfaces and object-
oriented languages such as Java that makes it easy to work with
images — such as cards — in programs. Unfortunately, there are
some obstacles: trying to obtain a set of card images that are not
encumbered by any copyright restrictions, and guiding students
toward a modular design approach featuring well-designed core
card classes that are conducive for development of multiple card
games.

A card game assignment is used in our third introductory
programming course, where after two quarters of C++, students
are exposed to GUIs, event handling, and code libraries (including
the Collections Framework) using Java. A set of card images
distributed through the GNU General Public License is made
available for use. Students are instructed to write a test engine to
verify the correctness of their card class prior to implementing the
card game itself. It is a nifty assignment in several ways. Most
students are familiar with card games, Java Swing components
facilitate both displaying and interacting with images, and the
program actually does something fun once it is completed.
Additionally, the assignment presents an opportunity to discuss
ethical issues such as copyrights and licensing. The accompanying
web site provides both the set of card images and several classic,
yet doable, card game assignments for your adopting pleasure.

Donald Chinn — Digital Signatures, Font
Files, and Recursion (CS2)
Many examples of recursion either are too simple (for example,
factorial or Fibonacci numbers, mergesort, quicksort), or could be
solved directly and more efficiently by iteration (for example,
searching through a binary search tree). Even recursion problems
of appropriate complexity may suffer because the problem looks
contrived, such as with the Towers of Hanoi. This assignment
centers on a problem that combines significant recursion in a real-
world problem using cryptography, security, and font files.

Under some circumstances, a font file is modified to include only
those characters used in a document. This process, called
subsetting, can drastically reduce the space used by a font.
However, if we attach a digital signature to a font file to detect
that the font has been modified from the original, then the
signature on the original font file will no longer be valid if it is
subsetted. Signing the file again after subsetting is not a feasible
option.

This assignment asks students to implement a recursive solution
to the problem of preserving the authentication power of a digital
signature, even when arbitrary subsets of the original file are
removed. It is an application of recursion that is of moderate to
high complexity, not easily implemented by an iterative solution,
and based on a real world application.

Successful completion of the assignment requires a knowledge of
recursion and binary trees. Previous experience with recursive
algorithms such as mergesort could be helpful. The assignment
could be given in an algorithms course or as an advanced exercise
in the data structures course. Its difficulty and length can be
adjusted by varying the amount of starter code, examples, etc.
provided to the students.

