
Nifty Assignments
Nick Parlante (moderator)

Stanford University
nick.parlante@cs.stanford.edu

John K. Estell
Ohio Northern University

estell@onu.edu
David Levine

St. Bonaventure University
dlevine@cs.sbu.edu

David Reed
Creighton University

davereed@creighton.edu
Julie Zelenski

Stanford University
zelenski@cs.stanford.edu

Dan Garcia
University of California at Berkeley

ddgarcia@cs.berkeley.edu

Introduction familiar Web interface, even beginning students are able to
produce interesting and attractive programs for tasks such
as running a slot machine, testing for ESP, simulating
random walks, and playing hangman.

Creating assignments is a difficult and time consuming part
of teaching Computer Science. Nifty Assignments is a
forum, operating at a very practical level, to promote the
sharing of assignment ideas and assignment materials. Dan Garcia — Shall We Play A Game? (CS1)
Each presenter will introduce their assignment, give a quick
demo, and describe its niche in the curriculum and its
strengths and weaknesses. The presentations (and the
descriptions below) merely introduce each assignment. For
more detail, each assignment has its own web page with
more detailed information and assignment materials such as
handouts and data files to aid the adoption of the
assignment. Information on participating in Nifty
Assignments as well as all the assignment pages are
available from our central page...

This assignment is used in our introductory course in
Scheme. Many of our students have never touched a
computer in their lives other than to browse the internet.
The assignment leverages my earlier "Gamesman" project
which allows the programmer to put in the rules,
representation, moves and terminating conditions for a
small two-player game, like tic-tac-toe.

The system then "solves the game" by playing every game
against itself (as in the movie "Wargames") and determines
both players' perfect strategy.

http://cse.stanford.edu/nifty/ For the students' final project they implemented one of
about 10 small games we had collected. The students wrote
code to represent the board, represent a move, and compute
the resulting board of a move.

David Reed - Web Programming (CS0)
The growing popularity of the Web and its intuitive
graphical interface has opened a new world of
programming opportunities for beginning students.
Whereas programming used to mean mastering full-
featured programming languages and complex
programming environments, the introduction of JavaScript
as a scripting language for Web pages has placed a free and
simple programming environment on every desktop. With
only a brief introduction to programming fundamentals,
novice programmers can begin to write fun and interesting
Web-based programs that utilize the familiar graphical
interface of the Web.

The assignment stresses good representation and
abstraction, the importance of clear specifications, and that
just a few lines of code can demonstrate "intelligence".
Things which make this assignment nifty...

• The highest-order nifty bit is that the students
love these small paper-and-pencil games to
which they are introduced. This is recreational
mathematics at its finest, and their enthusiasm
carries over to the amount of time they spend
adding feature upon feature to the finished
product.In this presentation, I will demonstrate numerous programs

that have been developed and used by students in Web-
based CS0 courses offered at Dickinson College and
Creighton University. These programs combine basic
programming skills with the graphical Web interface to
produce professional-looking programs that students are
proud to display to the world. Some of these programs are
provided to the students and used in assignments as tools
for experimentation and problem-solving. For example,
students use a Web page to generate random letter
sequences and use that data to estimate the number of 3-
letter words in the English language. Other assignments
require students to design, code, and test their own
programs. By integrating their code with the already

• The assignment is fairly open-ended in that it
allows (but does not require) for the user to
implement a graphical output interface.

• The user can easily parameterize some of the
rules, which when tweaked, can result in games
with vastly different strategies.

• When students are finished with their project
they continue to play with it, and teach
themselves good winning strategies.

• Students can share their projects with others not
in the class.

The project depends on Gamesman currently available only
in C and Scheme, and the students need about an hour of
very basic combinatorial game theory.

The students must make the same measurements as in the
more traditional lab, but then they must actively associate
those measurements with a theory rather than seeing "if
they fit". They must exhibit more judgment about what
constitutes "good enough". Finally, they must write up their
conclusions in a relatively free format.

John K. Estell Adventure Games (CS1-CS2)
You are in a twisty maze of nifty assignments, all
different... Inspired by the classic Crowther and Woods
interactive fiction game, "Adventure" has always been a
favorite assignment. By entering simple English command
phrases such as GO WEST or TAKE AXE, an adventure
game allows the user to explore a simulated world and
interact with the objects and characters present within.

Nifty things about this assignment: Students must design
their own experiments, requiring a higher degree of
engagement than the traditional lab.

NO CODING! Computer science is not programming, but
many of our lab exercises give this impression. This one
does not.The nifty thing about an adventure game assignment is that

it exercises a broad range of programming constructs that
tie many pertinent concepts together, but in a way that
allows for creativity and latitude for personalization on the
part of the programmer. It is this freedom to finally craft
something of their own design, plus the challenge of a
"large" assignment, that excites and motivates the students;
they realize that one must have a good grasp of all of the
concepts covered in class in order to accomplish this task,
which makes for an appropriate capstone experience. This
assignment has worked well on various levels.

It is easy to change the assignment from semester to
semester by changing the mapping of the sorts and/or by
reimplementing one of the algorithms to make it match the
textbook's version. Source code for the project can serve as
a small case study for design.

Julie Zelenski — Boggle (CS2)
(Thanks to Owen Astrachan for helping with this section.)
Boggle stands out in our minds as one of our biggest
success stories in CS2 assignments. Stanford and Duke
have both been using Boggle in the intro courses since the
early 1990s. With our 10 years of experience, we have
found lots of neat ways to put the game to work in teaching
our students nifty things.

There is great latitude in how an instructor can present this
assignment. Normally, a minimum set of operations (such
as movement and object manipulation) and rooms are
specified. From this basis point one can present a skeletal
program specifying both the data structures and function
prototypes, and ask for the implementation of the functions
that manipulate the structures; provide detailed map and
room descriptions as a framework and ask that it be
implemented; or just specify a theme and some sample
interactions and leave the students to their own designs. See
the Nifty web page (above) for instructional resources,
including skeletal code, data files, scenarios, and fully
implemented programs to make it easy to adopt this
assignment.

A Boggle board contains 16 letter cubes randomly arranged
in a 4x4 grid and the goal of the game is to form words by
tracing paths through adjacent cubes without re-using
letters. The game can be written to pit a single human
player versus a computer or a multi-player version, with or
without networking.

At Stanford, Julie introduced Boggle because of its lovely
recursive properties. At the heart of the game are the
searches: the backtracking exploration to find the human
player's word on the board and the exhaustive traversal to
find all remaining words for the computer player. Each has
an elegant recursive solution and both raise interesting
issues such how to properly mark/unmark the cubes to
avoid duplication, how to efficiently prune dead end paths,
and so on. The students love the game and find it especially
satisfying to write a program that so soundly whips them in
round after round of play.

David Levine — Sort Detective (CS2)
The sort detective is meant to test student's understanding
of sorting algorithms and their behaviors on particular
kinds of data sets. It can be used to compare and contrast
any number of (comparison-based) sorting algorithms.

A common laboratory for studying sorts and asymptotic
run-time behavior has the students run various sorting
algorithms on particular sets of data and draw particular
conclusions from the results. Such labs are sometimes
praised as exemplifying the scientific method, but they are
often subject to the criticism that they are very
cookbookish.

At Duke, Owen was intrigued by the differing ways to
construct a computer Boggle player. A trie-based dictionary
can efficiently support a prefix-pruned search to find words
on the board. But surprisingly, you can also solve the
problem by trying every word in the dictionary to see if
exists on the board rather than the other way around,
exploiting the speed of the cpu to solve the problem in a
opposite-of-how-humans-do-it way. There are interesting
alternatives to consider in terms of the board data structure
such as constructing an explicit graph linking the cubes
versus using row,col adjacency information.

The SortDetective turns this assignment on its head.
Students are presented with a complete program containing
various sorting algorithms, data input capabilities, and
measurements that can be made. Unfortunately, all of the
algorithms are "anonymous". Rather than being told what
sorts to run, the students must design their own experiments
so as to match the behaviors with the algorithms. As a
result, it would be very odd for any two independent groups
to do the same thing!

Overall, we have found Boggle to be a great source of nifty
assignments that exercise recursion and data structures
nicely while creating something fun and appealing for the
students.

