Nifty Assignments Panel

Nick Parlante (moderator)
Stanford University
nick.parlante@cs.stanford.edu

Mike Clancy
University of California at Berkeley
clancy@eecs.berkeley.edu

Stuart Reges
University of Arizona
reges@cs.arizona.edu

Introduction

The Nifty Assignments panel is a practical forum for the
sharing of assignment ideas — demonstrating good
assignment features and tradeoffs, and providing concrete
materials for the CSE community to use.

Each panelist will introduce the basic idea of their
assignment, give a quick demo, and describe its niche in the
curriculum — its strengths and weaknesses. The live
presentation is merely an introduction to each assignment.
Fortunately, the following web page has handouts, data
files, etc. for each of the assignments...

http://cse.stanford.edu/nifty/

This is the second SIG-CSE with a Nifty Assignments
panel. So far, the panels have been constructed by strong-
arming people known to the moderator to have good
assignments. This has worked well early on — high quality
with very little editorial or logistical effort. However, given
the level of interest, future assignment-sharing panels
would benefit from drawing wider participation with a real
CFP style call for people's favorite assignments.

Mike Clancy - Windows and Regions (CS1)

The Windows and Regions program involves list
manipulation in the solution of a very visual problem. The
problem centers on a stack of rectangular regions in a
window. The regions are arranged randomly and overlap
each other. One region is in front, and gradually smaller
and more irregular pieces of the other regions are exposed
as they go back. A click in an uncovered part of region
brings it to the front.

=

[]

—

The graphics code is provided to the students, and they
concentrate on the storage and algorithmic parts of the
assignment. Nifty things about this assignment:

« The problem requires an extension to the Stack
data type, and thus isn't merely "reinventing the
wheel".

« It is not too hard, yet it builds something visual
and active that the students can relate to the real
window managers they use all the time.

Julie Zelenski
Stanford University
zelenski@cs.stanford.edu

Owen Astrachan
Duke University
ola@cs.duke.edu

« The output, activity, and bugs of the program all
express themselves visually.

e It is extensible in various ways. Examples:
multiple implementations of the region list, one
using an array, the other using a linked list;
support of colored squares within regions
(clicking on an uncolored area creates a square,
and clicking on a colored square erases it).

Stuart Reges - Personality Test (CS1)

This assignment is based on a personality/temperament test
developed by Keirsey and Bates in the pop-psych book
Please Understand Me. The first part of the assignment is a
straightforward application of 70 multiple choice questions.
Collecting answers to these questions is a fine CS1 problem
which may or may not be used as part of the assignment (if
not, there are tools to do it).

Each person's survey boils down to four numbers. One
number for Extroversion vs. Introversion, one for Intuition
vs. Sensation, one for Thinking vs. Feeling, and one for
Judging vs. Perceiving. Of course the results can be
fabulously inaccurate, but they do appear to vaguely
correlate with each person's self-image. Accuracy aside, the
results are great to play with and start discussion.

The nifty assignment is to write a program which
manipulates the personality data of all the students. You
can store, sort, and massage the data in the obvious flat-file
ways. The most interesting application is to think of each of
the four qualities as representing a dimension in space, so
each person is a point of a four dimensional space. The
fascinating analysis then is to pick a particular person, and
compute the most-similar/most-different ordering of all
people in increasing order of distance from that person.
This shows you the most similar people to that person at the
front of the list, and the most different at the far end of the
list.

Part assignment and part ice-breaker, this assignment builds
something that the students want to play with. It also leads
to a great gift-exchange where you pair off all the students,
each with their "most similar" person (computing the stable
marriage may be part of the assignment or not — it lacks
the fun factor of the "similar/different” sorting). Each
person gets their dual a gift — the theory being that their
intuition in gift selection will be perfect.

Julie Zelenski - Quilt (CS1)
The quilt assignment is a simple CS1 assignment that has
the students write a program to draw a "sampler quilt"
using a simple graphics library.

Our sampler quilt is made up of five blocks, each with its
own individual theme, while still featuring common
elements Each block is repeated five times and all 25
blocks are arranged into a square to form the entire quilt.

colors of which the student can feel proud.

We use this assignment fairly early on in CS1. After a few
weeks of syntax, variables, and control structures, we move
on to functions and decomposition. A graphical drawing
assignment seems to work marvelously for teaching
students the benefits of designing reusable functions and
encouraging thoughtful decomposition. The elements of the
picture that are visually repeated help point the student in
the correct direction of unifying the underlying code. The
graphics library we use in CS1/2 offers just the basic
primitives: lines, arcs, text, and color. By deliberately not
including often-used routines such as rectangles, circles,
etc. these become the first building blocks that the students
construct for the quilt. Within the quilt design, we
deliberately include repeated elements within and among
the blocks (the filled-and-framed circle, centered text, etc.)
that give further opportunity for code unification given
appropriately parameterized utility routines.

The substance of this assignment is about gaining
experience with functions, parameters, and decomposition,
and as a side effect they become familiar with the graphics
library. There are some simple calculations involved in
arranging the blocks and drawing the lines and arcs, but
nothing too off-putting for the non-mathematically-inclined
student. | see the content matter as welcoming to all
students, and perhaps particularly appealing to the creative,
right-brain type who might be turned off by a more
mathematical/engineering project.

The assignment seems to work well. The first more
substantive project in CS1 usually causes frustration for
students who haven't yet developed strong debugging skills,
yet this has not been as much a problem for quilt given the
very direct correlation between bugs and their visual result.
The students are excited by a program with a tangible result
and it often inspires them to embellish beyond the basic
requirements; we have many beautiful and extraordinary
versions submitted by the more advanced students.

Owen Astrachan - Word Ladder (CS2)

The Word Ladder program is similar to a "6 degrees of
separation” or "Oracle of (Kevin) Bacon" game, but using
words rather than people or actors. Simply, from a given
starting word, find the shortest "ladder" of single letter
changes which leads to some final word, where each
intermediate state is also a word.

For example: clash, flash, flask, flack, flock, clock, crock,
crook, croon, crown, clown.

This program is nifty on several levels. It can be used early
in a CS2 course when queues are discussed, and brought up
again later when/if graph algorithms are covered. A naive
algorithm of checking every word as the potential next
word in a chain runs quickly, but precomputing all edges in
the graph of words makes finding ladders instantaneous at
the expense of a significant up-front cost to compute the
graph.

We have used this assignment early in a CS2 course after
covering linked structures (to connect a word with its
predecessor), stacks, and queues. We have also used it at
the end of a CS2 course as an example of breadth-first
search in a graph. We have had students animate the
process of putting words on the queue to understand that a
shortest path is guaranteed to be found. For extra credit we
have given the problem of finding the longest word ladder
which is, in general, an intractable problem, though
solvable in the case of real five-letter words.

We are in the process of incorporating the Oracle of Bacon
in addition to words into the assignment. Certainly the next
step is to connect nifty CS educators.

Nick Parlante - Tetris Brain (CS2)

The first part of the Tetris Brain assignment implements
Tetris in a modular way — dividing the solution into Piece
and Board classes. We've given this assignment with
procedural ADTs in Pascal and C, and later switched to
OOP in C++ and Java. This first part of the assignment
stresses classic OOP modularity: build modules that
encapsulate significant complexity and have clean
abstractions, test the modules separately, and then fit the
modules together to solve the overall problem.

The second part of the assignment adds a robot brain
module that plays the game by itself — an algorithm that
given a piece and a board, finds a good rotation and column
to place the piece. The code to build a decent brain is
surprisingly simple, since the Piece and Board classes hide
most of the implementation complexity.

Once the brain is working, the program becomes sort of
mesmerizing. The students can spend hours watching their
brain play and tuning its heuristic code. A neat extension of
the brain is a Tetris "adversary". Normally, the Tetris game
chooses the next piece for the player randomly. In contrast,
the adversary looks at all the possible pieces that could
come next, finds the piece that gives the worst best move
according to the brain, and gives the player that piece.
Spring it on the roommate. The adversary is not that hard to
code, again, because it builds on the abstractions of the
other modules.

The Tetris assignment is fairly difficult— requiring perhaps
2 weeks in CS2. The Board class in particular is
algorithmically complex and has many little boundary
cases. The strength of the assignment is that it shows off
OOP modularity well — taming the complexity by dividing
the program up. The brain and adversary features build on
the basic modules nicely and make the thing fun to watch
and play with.

