
Nifty Assignments Panel
Nick Parlante — Stanford University — nick.parlante@cs.stanford.edu (Moderator)

Owen Astrachan — Duke University — ola@cs.duke.edu
Mike Clancy — University of California at Berkeley — clancy@eecs.berkeley.edu

Richard E. Pattis — Carnegie Mellon University — pattis@cs.cmu.edu
Julie Zelenski — Stanford University — zelenski@cs.stanford.edu

Stuart Reges — University of Arizona — reges@cs.arizona.edu
Introduction task. Where graphic display facilities are available, the

chase can be graphically depicted. Also, the assignment
adapts well to an object-oriented programming
environment, with cat and mouse objects. For more
information, please see:

This panel is a forum for sharing a few favorite CS1 and
CS2 assignments from the SIG-CSE community. Given our
limited time, each panelist will concentrate on the broader
niche, strengths, and weaknesses of their assignment, rather
than its specific implementation. Fortunately, for each
assignment there is a web page with all sorts of practical
details and materials for anyone interested in using or
studying the assignment.

 http://cse.stanford.edu/assignments/catandmouse/

Stuart Reges - Bagels/Jotto (CS1)
Bagels is a number guessing game similar to MasterMind.
The user repeatedly guesses a number and is given clues as
to how many digits in the guess are correct and in the
correct place and how many digits are correct but in the
wrong place. I assign this program about halfway through
CS1. It involves loops, interaction with the user and array
or string manipulation. I have given the assignment in
several different forms and in several languages (Pascal,
C++, Java).

More information about the panel and its assignments is
available at: http://cse.stanford.edu/assignments/. Although
obvious, it bears mentioning that you should cite the
original author if you decide to use one of these
assignments. Citation promotes the atmosphere of sharing.

On its face, this panel presents practical information to help
you adopt or get ideas from some successful assignments,
and promotes a discussion of the techniques and lessons of
successful assignments generally. In the larger picture, this
panel is an experiment in communicating very applied,
practical material within the SIG-CSE community. This
idea may have future directions in SIG-CSE publications
and electronic repository efforts.

The assignment has two major benefits. First, the students
enjoy it. I have observed many students showing their
bagels program to friends and relatives and using the
program even after the course is over. The second benefit is
that the problem involves a nontrivial bit of algorithmic
thinking. Writing code that provides the correct clues takes
a while to get just right, mostly because a digit cannot
match more than once.Mike Clancy - Cat And Mouse (CS1)

My favorite CS1 assignment simulates an urban park,
where a cat chases a mouse around the circular base of a
statue of (say) Niklaus Wirth. If the cat sees the mouse, it
moves toward the statue. If it doesn't see the mouse, it
circles around the statue. If the cat and the mouse are both
at the base of the statue and the cat would move past the
mouse, it eats the mouse as it passes. If the cat spends too
much time chasing the mouse, it gets bored and wanders
off.

Probably the biggest weakness of the assignment is that it
takes a while to explain the rules of the game. I also suspect
that most instructors will find the program too difficult for a
one-week assignment and not rich enough to justify making
it a two-week assignment. To address this problem, I use a
variation of Bagels known as Jotto. It involves guessing 5-
letter words with other 5 letter words. Because of its
difficulty, I'm happy to use Jotto as a 2-week or even 3-
week assignment towards the end of CS1. For more
information, please see:I had three goals for the assignment when I designed it: a

solution shouldn't need arrays, it should need around 75 to
100 lines of code, and it should involve some sort of
mathematical computation. (I was teaching the “intro
programming for engineers” at the time.) This problem met
those goals nicely. The cat and mouse positions can be
represented in two radius/direction pairs; a few other
variables are needed for bookkeeping. I have a commented
Pascal solution that's 85 lines long. The trigonometry
necessary to derive the formula for the “sees” function is
nontrivial.

http://www.cs.arizona.edu/people/reges/bagels/

Richard E. Pattis - Efficiently Determining
DNA Sequences (CS1)
A molecular biologist wants to determine the bases in a
gene (a strand of DNA, consisting of a sequence of tens of
thousands of bases: A, C, G, or T). The technique is to
clone the gene, randomly break the clones into fragments
small enough to be sequenced, and then figure out the
original gene by looking at the fragments. This works
because fragments from one clone will often overlap with
nearby fragments from another clone, allowing the
construction of larger and larger fragments.

I later noticed other nifty features. For instance, the
problem's complexity may be varied by reversing the
direction of the cat with respect to the mouse: when both
are circling in the same direction, the possibility of an
infinite loop arises. In either case, control flow is
sufficiently complex that thorough testing is a significant

The program stores a vector of fragments (where each
fragment is an object that contains a string label and a
vector of its bases). Then, it finds two fragments that



overlap, removes them, merges them, and puts the merged
fragment back into the vector of fragments, until there is
only one fragment (success) or no fragments overlap
(failure).

Representing the grammar in memory is a nice, reference-
intensive data structure. Once the grammar is read in,
producing random sentences is a pretty straightforward but
satisfying recursion problem. Over the years, the students
have supplied us with an entertaining collection of grammar
files: Star Trek episodes, James Bond movies, Dear John
letters, extension requests, haiku, and so on.

I use this CS1 assignment when students first start
manipulating data structures built by composing vector and
class objects. It illustrates a real-world, combinatorial
problem; but the true focus of this assignment is on the
separation of concerns of program correctness and
efficiency. Initially students solve the problem over 2
weeks, concentrating on writing clean/simple and correct
code. Then, they use a program profiler in a lab to locate
the hot spots in their code, and use this information to make
small changes that affect the whole program's performance
dramatically. An hour's work with the profiler improved my
original program by a factor of four — with the biggest
improvement coming in an unexpected place. Another
program that fits well with this assignment is a TCP/IP-like
message reassembly task. For more information, please see:

My favorite use of the RSG is to teach collection
abstractions by using them to store the several layers of the
grammar. The needed collection abstractions may be pre-
provided things such as the java.util or C++ STL objects.
Better yet, have the students implement a collection ADT
(week-1), and then use the RSG as a follow-on client
(week-2). This works well because the grammar's natural
three layers of “collection” make it a demanding client. If
the week-1 collection implementation also happens to be
complex (say, a chunked linked list), then the student gets a
real appreciation of the wall of abstraction from both sides.

A useful feature of the RSG is that it doesn't need any
platform-specific features (i.e. no graphics, sounds, events,
threads, etc.) so it has few portability obstacles. It's text-
only assignment that's still very entertaining to run. For lots
of RSG materials, including grammars, and a demo Java
applet, please see:

http://cse.stanford.edu/assignments/dna/

Owen Astrachan - Huffman Coding (CS2)
A favorite assignment in our CS2/Data Structures course is
the implementation of a pair of programs for data
compression using Huffman coding. This is roughly a two-
week project that combines several of the different data
structures we have studied during the semester.
Implementing the programs requires care in debugging and
testing since the output is not text. Most students build test
and debugging methods as part of the program or
eventually wish that they had.

http://www-cs-faculty.stanford.edu/~zelenski/rsg/

Nick Parlante - Darwin's World (CS2)
Darwin's World is my favorite CS2 assignment for
stressing modularity — it's large and has several natural
sub-components. It also happens to be fun to play with. Its
individual data structure are modest: 1-d and 2-d arrays,
structures, possibly some simple pointers. However, the
whole thing layered together is pretty complex. Its size and
difficulty are its main weakness. A CS2 student will need
two or more weeks to complete it.

Instructors of the course like the assignment because the
implementation requires the use of several data structures:
vectors to count character frequencies, maps/tables that
map characters to a coding pair (bit sequence and number
of bits), binary trees or tries for determining the coding
pairs during compression and for determining characters
during decompression, priority queues for building the
coding tree/trie. We typically assign the program near the
end of the course when we have covered all these topics.

Externally, Darwin's World looks like a chess-board type
world inhabited by creatures of a few species. The creatures
hop around the world and compete with each other (Darwin
does need simple graphics). Internally, the program has
three significant parts: A textual species programming
language, creatures that inhabit the world and run
(interpret) their species program, and a world that
moderates things. Darwin's good points are...

Students like the assignment because they build a
demonstrably useful program from scratch. There is room
for distinction in the program as well since students are free
to develop more sophisticated methods for representing the
encoding information at the beginning of a compressed file.
A complete description of the project, instructor guidelines,
and possible student starter materials in C++ and Java are
available at: http://www.cs.duke.edu/csed/poop/

-It reaches that critical mass of complexity where
decomposition and modularity matter. The component parts
are individually complex, but they fit together nicely.

-The running version of the program is fun to play with.

-Through the Species programming language, the program
gives students a sense of how interpreted languages work.
Also, species/creature is a nice analog for class/object.

Julie Zelenski - The Random Sentence
Generator (CS2)
The “Random Sentence Generator” (or RSG as it is
affectionately known) is a fun and versatile assignment we
have given in many forms and languages in our CS2 and
later courses (Pascal, Ada, LISP, C++, C, Java). The basic
idea is to read in a context-free grammar, and then use it to
generate random sentences. The grammar is a collection of
definitions, where each definition gives the collection of
possible expansions for a non-terminal, and each expansion
is a sequence of terminals (plain words) and non-terminals.

-With a working program (theirs or otherwise) students get
drawn into working on their own species — devising more
and more intelligence into them so they do well against
other species. It's easy to have a species tournament.

The assignment is difficult, but worthwhile. It stresses the
right skills, and it results in something that students like
playing with. For more information, please see:
http://cse.stanford.edu/assignments/darwin/


