Handout #25 Winter 1999
February 5, 1999 Robert Plummer

Darwin Contest

Due: Wednesday, Feb 17 at 11:59pm

In this assignment, your job isto build asimulator for a game called Darwin invented by
Nick Parlante—a game that has become a classic assignment for CS106B. The assignment
has a four-fold purpose:

1. Togiveyou achance to write alarge multi-module programs.

2. Toillustrate the importance of modular decomposition. The entire program is broken
down into a series of modulesthat can be devel oped and tested independently.

3. To stressthe notion of ADTs as a mechanism for sharing data between modul es without
revealing the representational details.

4. Tolet you have fun with an application that isextremely captivating and algorithmically
interesting in its own right.

The Darwin world

The Darwin program simulates a two-dimensional world divided up into small squares and
populated by a number of creatures. Each of the creatures livesin one of the squares, faces
in one of the major compass directions (North, East, South, or West) and belongsto a
particular species, which determines how that creature behaves. For example, one possible
configuration of the world is shown below:

[E> (R
& <

[
B> ()
[E>

The sample world on the previous page is populated with twenty creatures, ten of a species
caled Flytrap and ten of a species called Rover. In each case, the creatureisidentified in
the graphics world with the first letter in itsname. The orientation isindicated by the figure

surrounding the identifying letter; the creature pointsin the direction of the arrow. The
behavior of each creature—which you can think of as a small robot—is controlled by a
program that is particular to each species. Thus, al of the Rovers behave in the same way,
asdo al of the Flytraps, but the behavior of each speciesis different from the other.

Asthe simulation proceeds, every creature getsaturn. Onitsturn, a creature executes a
short piece of its program in which it may look in front of itself to see what’ s there and then
take some action. The possible actions are moving forward, turning left or right, or infecting
some other creature standing immediately in front, which transforms that creature into a
member of the infecting species. As soon as one of these actions is completed, the turn for
that creature ends, and some other creature getsitsturn. When every creature has had a
turn, the process begins al over again with each creature taking a second turn, and so on.
The god of the gameisto infect as many creatures as possible to increase the population of
your own Species.

Species programming

In order to know what to do on any particular turn, a creature executes some number of
instructionsin an internal program specific to its species. For example, the program for the
Flytrap speciesis shown below:

step instruction comment
1 ifenemy 4 If thereis an enemy ahead, go to step 4
2 | eft Turn left
3 go 1 Go back to step 1
4 infect I nfect the adjacent creature
5 go 1 Go back to step 1

The step numbers are not part of the actual program, but are included here to make it easier
to understand the program. Onitsturn, aFlytrap first checksto seeif it isfacing an enemy
creature in the adjacent square. If so, the program jumps ahead to step 4 and infects the
hapless creature that happened to be there. If not, the program instead goesonto step 2, in
which it smply turnsleft. Inether case, the next instruction isago instruction that will
cause the program to start over again at the beginning of the program.

Programs are executed beginning with the instruction in step 1 and ordinarily continue with
each new instruction in sequence, athough this order can be changed by certain instructions
in the program. Each creature is responsible for remembering the number of the next step
to be executed. Theinstructionsthat can be part of a Darwin program are listed below:

hop The creature moves forward as long as the square it is facing is
empty. If moving forward would put the creature outside the
boundaries of the world or would cause it to land on top of
another creature, thehop instruction does nothing.

| eft The creature turns left 90 degreesto face in anew direction.
ri ght The creature turns right 90 degrees.

infect n If thesquareimmediately in front of this creature is occupied by
acreature of a different species (an “enemy”) that creature is
infected to become the same as the infecting species. When a
creature is infected, it keeps its position and orientation, but
changes its internal species indicator and begins executing the
same program as the infecting creature, starting at step n. The
parameter nisoptional. If it is missing—asit isin the program
examples—the new creature should start at the beginning of its
new program, so that thei nf ect instruction with no parameter
isequivaenttoi nfect 1.

i fempty n If the squarein front of the creature is unoccupied, update the
next instruction field in the creature so that the program
continues from step n. If that square is occupied or outside the
world boundary, go on with the next instruction in sequence.

i fwal I n If the creature is facing the border of the world (which we
imagine as consisting of ahuge wall) jJump to step n; otherwise,
go on with the next instruction in sequence.

i fsame n If the square the creature is facing is occupied by a creature of

the same species, jump to step n; otherwise, go on with the next
instruction.

i fenemy n If thesquarethe creatureisfacing isoccupied by acreature of an
enemy species, jump to step n; otherwise, go on with the next
instruction.

i frandom n Inorder to make it possible to write some creatures capable
of exercising what might be called the rudiments of “free will,”
thisinstruction jumps to step n half the time and continues with
the next instruction the other half of the time.

go n This instruction always jumps to step n, independent of any
condition.

A creature can execute any number of i f or go instructions without relinquishing itsturn.
The turn ends only when the program executes one of the instructionshop,| eft ,ri ght ,
ori nf ect . On subsequent turns, the program starts up from the point in the program at
which it ended its previous turn.

The program for each speciesis stored in afilein the subfolder named Cr eat ur es inthe
assignment folder. Each filein that folder consists of the species name, followed by the
stepsin the species program, in order. The program ends with the end of file or ablank
line. Comments may appear after the blank line or at the end of each instruction line. For
example, the program file for the Flytrap creature looks like this:

Flytrap

i fenemy 4
| eft

go 1

i nfect

go 1

The flytrap sits in one place and spins.
It infects anything which comes in front.
Fl ytraps do well when they cl ump.

There are severa presupplied creature files:

Food This creature spinsin asquare but never infects anything. Its
only purposeisto serve asfood for other creatures. As Nick
Parlante explains, “the life of the Food creature is so boring
that itsonly hope in life is to be eaten by something else so
that it gets reincarnated as something more interesting.”

Hop This creature just keeps hopping forward until it reaches a
wall. Not very interesting, but it is useful to see if your
program is working.

Flytrap This creature spins in one sguare, infecting any enemy
Cregture it sees.

Rover This creature walks in straight lines until it is blocked,
infecting any enemy creature it sees. If it can’t move
forward, it turns.

Y ou can also create your own creatures. In particular, you can design a creature for the
Darwin Contest described in a separate handout.

Your assignment

Y our mission in this assignment is to write the Darwin simulator and get it running. Since
thisisalarge program, it isamore challenging task than any of the ones you have faced to
date. The program islarge enough that it is broken down into six separate modules that
work together to solve the complete problem.

Of the modules, you are responsible for the following four:

dar wi n This module contains the main program, which is responsible for
setting up the world, populating it with creatures, and running the
main loop of the ssimulation that gives each creature a turn. The
details of these operations are generally handled by the other
modules. New creatures should be created in random empty
locations, pointing in random directions.

creature This module defines an abstract data type representing an
individual creature, along with functions for creating new creatures
and for taking aturn.

speci es Thismodule defines an abstract data type representing a species,
and provides operations for reading in a species description from a
file and for working with the programs that each creature executes.

wor | d This modul e contains an abstraction for a two-dimensiona world,
into which you can place the creatures.

The following modules have been provided for you:

geomet ry This module defines types to represent points and compass
directions, which are the same as those used in the maze-solving
program from Chapter 6.

wor | dmap Thismodule handles all of the graphics for the simulation.

Even though the program is big, the good newsisthat you do not have to start completely
from scratch. In fact, you have the advantage of being able to start with acomplete program
that solvesthe entire assgnment. This meansthat you get to play with aworking Darwin

program immediately beginning on day 1. It does not, of course, mean that your work is
finished.

We provide you with the following files:

Interfaces

geometry. h
wor |l d. h

species. h
creature.h
wor | dmap. h

Libraries

darwin.lib
world.lib
speci es. |

ib
creature.li

b

Sour ce code

geometry.c
wor | dmap. c

To get started, you can use these files to build a complete project for the entire Darwin
system. For example, if you are using CodeWarrior on the Mac, you would put together a
project like this (PC users would have the same libraries and sourcesin their projects, plus
CSLib.lib):

EDE [Iﬂrl.l.lin.ﬂ E_”E
Link Order Targets

WL Darwin 13 | 3 @ E‘,:} g ﬁ‘

B [#] File |_Code| Data|yf

= Cj, Sources BK 1017 » (=]
S creature.lib 2222 221 =
S darwin.lib 1245 2582 =
Bl geomnetry .o 516 T2 o« @
S species.lib 1164 174 =
S world.lib 545 136 =
Bl worldmap .o 2260 172 « @

[Cj, CS Libraries 33K 12K =

[+ [Cj, ANSI Libraries 176K S1K =

[» [, Mac Libraries 17K sk =
14 files 235K 69K I

Instead of sourcefiles, the project contains library implementations for each of the modules
with the exception of geomet ry. ¢ andwor | dmap. ¢, which you are given in source
form. Your jobisto reimplement the moduleswor | d,speci es,creat ur e, and

dar wi n, probably (although not necessarily) in that order. When you have written your
own implementation of any of these modules, you can removethe. | i b filefrom the
project and add your . c fileinitsplace. Theinterfaces have al been given to you; your job
isto write a new implementation for each of these four modules that implements the
functions that are part of that interface description.

I mplementation constants

In your implementation, you should use the following constants to control the operation of
your program:

/ *
* Constants
X oo - - -
* NRows Number of rows in Darwin world
* NCol ums Number of columns
* MaxSpeci es Maxi mum number of different species
* MaxCreatures Maxi mum number of individial creatures
* MaxProgram Maxi mum program si ze
* Initial Count Initial number of creatures per
speci es
*/
#defi ne NRows 15
#defi ne NCol umns 15
#define MaxSpeci es 10

#defi ne MaxCreatures 100
#define MaxProgram 250
#define Initial Count 10

These constants will not al appear in the same source file, and it is up to you to determinein
which module each of these constants belongs.

A Note About the Sample App

If you run the sample Darwin program without specifying any creatures with which to
initially populate the board, the program may appear to "crash.” In redlity, the programis
just carrying out the infinite game loop, and because there are no creatures on the board, itis
running the loop so fast that it can't respond to keystrokes. If you ever end up in a situation
like this, hit Command-Option-Escape (or Ctrl-Alt-Del on a PC) to force the
application to quit.

Supplied interfaces
The remainder of this handout describes the files supplied as part of the assignment folder.

Filee geomet ry. h — new typesfor an x-y grid

Thismodule provides two low-level types(poi nt T anddi recti onT) that areused in
severa of the other modules. The code for thismodule is provided for you.

This interface provides some extremely simple types
and operations that are useful for manipulating points
on an x-y grid.

/

EE I B

#i fndef _geometry_h
#define _geometry_h

#include "genlib.h"

/
Type: pointT
The type pointT is used to encapsul ate a coordinate pair
into a single val ue. Because the record representation
makes good intuitive sense and adding an extra |evel of
pointers to the reference would reduce both execution and
storage efficiency, this type is exported in its concrete
form

/

L T N S R T

typedef struct {

type directionT can take on one of the four values North, East,
Sout h, and West.
/

int x, vy;
} pointT,;
/ *
* Type: directionT
K e o e e e e e e e e e e -
* This type is an exanple of an "enumerated type" in C. The
* values of type directionT are simply the constants listed in
* the braces following the enum keyword. Thus, a vari abl e of
*
*
*

typedef enum { North, East, South, West } directionT;

/
Function: CreatePoint
Usage: pt = CreatePoint(x, Vy);
This function combines the x and y coordinates into a pointT
structure and returns that val ue.

/

* % X X % X %

poi nt T CreatePoint(int x, int y);

* % X X X X %

Function: Adjacent Poi nt
Usage: newpt = AdjacentPoint(pt, dir);
This function returns the pointT that results from moving one
square in the indicated direction from pt.
/

poi nt T Adj acent Point(pointT pt, directionT dir);

/

E I S R

~

Functions: LeftFrom RightFrom
Usage: newdir = LeftFrom(dir);
newdir = RightFrom(dir);
These functions return the directions that result from turning
left or right fromthe given starting direction.

directionT LeftFrom(directionT dir);
directionT RightFrom(directionT dir);

#endi f

File: wor | d. h — abstraction to represent thex-y grid

This module includes the functions necessary to keep track of the creaturesin atwo-
dimensional world. In order for the design to be general, the interface adopts the following
design:

1. Theworldisimplemented as an abstract type.

2. The contents are unspecified objects represented asvoi d * pointers.

3. The dimensions of the world array are specified by the client and therefore must be
allocated dynamically.

Thisdesign impliesthat the internal structure is—at least in part—a two-dimensional
dynamic array of voi d * pointers. Y ou should give careful thought to how you can
declare and initialize such an array in C.

File: world.h

This interface defines an abstraction which can be used

to store objects in an x/y cartesian world. This abstraction
is completely independent of the graphical display, and the
client is responsible for any screen updates that are required.

* % ko X X 3k X

~

#i fndef _world_h
#define _world_h

#i nclude "genlib.h"
#i nclude "geometry. h"

/
Type: worl dADT

This abstract type stores the data for a "world," which is
defined to be a two-di mensional grid capable of storing
arbitrary objects represented as pointers whose type is
understood only by the client.

* ok X F kX Xk

~

typedef struct worl| dCDT *wor| dADT;

/
Functi on: Newwbrl d

Usage: world = Newwbrl d(wi dth, height);

This function creates a new world consisting of width columns
and height rows, each of which is numbered begi nning at O.

A newly created world contains no objects.

Lo T B T

~

wor | dADT NewWwbr |l d(int width, int height);

10

/ *
* Function: FreeWorld
* Usage: FreeWorl d(world);
K o o e e e e e e e e e e e e e e o
* This function frees all of the storage associated with a world.
*/

void FreeWorl d(worl dADT worl d);

/
Functions: Wbrl dW dth, Worl dHei ght
Usage: width = Wbrl dW dt h(worl d) ;

hei ght = Wbr | dHei ght (wor | d);
These functions return the width and the height of a world,
respectively.

* 0% X X kX X

int Worl dW dt h(wor | dADT wor | d) ;
int Worl dHei ght (wor | dADT worl d) ;

Function: | nRange
Usage: if (I nRange(world, pt))
This function returns TRUE if the specified point pt is within
t he boundaries of the world.
/

* Ok X Xk X %

bool I nRange(wor!l dADT world, pointT pt);

/ *
* Function: SetContents
* Usage: SetContents(world, pt, obj);
K e e e e e e e e e e e e e e e e e . =
* This function places the object obj into the world at the
* position indicated by pt.
*/

voi d Set Contents(worl dADT world, pointT pt, void *obj);

/ *
* Function: GetContents
* Usage: obj = GetContents(world, pt);
K e
* This function returns the object currently in the world at
* position pt.
* |

void *Get Contents(worl dADT worl d, pointT pt);

#endi f

11

File: speci es. h — abstraction to represent each species of creature

Theindividua creaturesin the world are all representatives of some species class and share
certain common characteristics, such as the species name and the program they execute.
Rather than copy this information into each creature, this data can be recorded once as part
of the description for a species and then each creature can smply include the appropriate
species pointer as part of itsinternal data structure.

To encapsulate al of the operations operating on a species within this abstraction, this
interface exports afunction ReadSpeci es whosejob isto read afile containing the name
of the creature and its program, as described in the earlier part of thisassignment. To make
the folder structure more manageable, the speciesfilesfor each creature are stored in a
subfolder named Cr eat ur es. To open afilein asubfolder, you need to concatenate the
string": Creatures: " ("Creatures\\" onaPC) ontothe beginning of thefile
name before callingf open.

File: species.h

This interface defines the species abstraction.
/

* % X X *

#i f ndef _species_h
#define _species_h

#i nclude "genlib.h"

/
Type: speci esADT

This type is the abstract data type for a species.

* % X X

~

typedef struct speci esCDT *speci esADT,;

The type opcodeT is an enumeration of all of the |ega
command names.
/

b

typedef enum {
Hop, Left, Right, Infect,
I fEmpty, Ifwall, IfSame, |IfEnemy, |fRandom,
Go

} opcodeT;

The type instructionT is used to represent an instruction
and consists of a pair of an operation code and an integer
/

L T S

typedef struct {
opcodeT op;
int address;

} instructionT,;

12

/ *
* Function: ReadSpecies
* Usage: species = ReadSpecies(filename);
*
* This function reads in a new species fromthe specified fil ename.
* To find the file, the function |looks in a subfol der named
* "Creatures”. If there is no file with the indicated name in
* that subfolder, the function returns NULL
*

~

speci esADT ReadSpecies(string filename);

/ *
* Function: Speci esName
* Usage: name = Speci esName(species);
K e e e e o e e e e e e e 2
* This function returns the name for an existing species.
*

~

string Speci esName(speci esADT speci es);

/ *
* Function: ProgramSize
* Usage: nSteps = ProgramSi ze(species);
K e e e e e e e e e e e e e e e e ==
* This function returns the number of instructions in the program
* for this species.
*

~

nt ProgramSi ze(speci esADT speci es);

/ *
* Function: ProgramStep
* Usage: statement = ProgramStep(species, k);
*
* This function returns the kth instruction in the program for
* this species, where program steps are numbered begi nning at 1.
* Attempting to select an instruction outside the program range
* generates an error.
*

/
instructionT ProgramStep(speci esADT species, int k);

#endi f

File: creature. h — abstraction to represent each individual creature

Creatures are a so represented as an abstract type, which isdefined by thecr eat ure. h
interface below:

13

File: creature.h

This interface defines the creature abstraction.

#i fndef _creature_h
#define _creature_h

#i nclude "genlib.h"
#i nclude "geometry. h"
#i nclude "species.h"
#include "world. h"

/
Type: creatureADT

This type is the abstract data type for a creature.
/

L I T

typedef struct creatureCDT *creatureADT,;

/ *
* Function: NewCreature
* Usage: creature = NewCreature(species, world, pt, dir);
K o o o o o o e
* This function creates a new creature of the indicated species
* that lives in the specified world. The creature is initially
* positioned at position pt facing direction dir.
*

/

creatur eADT NewCreature(speci esADT species, worl dADT worl d,
pointT pt, directionT dir);

/ *
* Function: GetSpecies
* Usage: species = GetSpecies(creature);
K e e o e e e e e e e e e e e e e e e
* This function returns the species to which this creature
* bel ongs.
*

/

speci esADT Get Speci es(creatureADT creature);

/ *
* Function: TakeOneTurn
* Usage: TakeOneTurn(creature);
K o e e e e e e e e e e e e e e e
* This function executes one turn for this creature.
*

/
void TakeOneTurn(creatureADT creature);

#endi f

14

File: wor | dmap. h — graphics package for the Darwin world

This modul e exports the functions necessary to display the creatures on the screen. The
project folder contains an implementation of thisinterface. Thus, you do not have to write
anything for this part of the assignment, although you should feel free to add
embellishments to the graphics code if you have any ideas for interesting extensions.

This interface supports the graphics for the Darwin world.
#i f ndef _worl dmap_h
#define _worl dmap_h

#i nclude "genlib.h"
#i nclude "geometry. h"

/*
* Function: InitwWbrl dMap
* Usage: I nitWorldMap(colums, rows);
K e e e e e e e e e e e e e e e e e . =
* This function opens and di splays two wi ndows on the screen, one
* for the Darwin world and one for the consol e. This call must be
* made before any other calls are made using this package and
* before any output to the standard |/ O channels. The parameters
* columns and rows specify the size of the world, although
* some squares will be outside of the visible display if the
* world is made too | arge.
*/
void InitWorldMap(int columns, int rows);
/*
* Function: DisplaySquare
* Usage: DisplaySquare(sq, keychar, dir);
* This function changes the display for the indicated square
* (the location of which is expressed as a point) so that
* it contains the "creature" indicated by the character keychar
* facing in the direction specified by dir. I f keychar is a
* space, the square is displayed as empty and the direction is
* jgnored.

/
voi d Di spl aySquare(pointT sq, char keychar, directionT dir);

#endi f

What toTurn In

Asaways, you will need to submit your source code to the cs106-overlord server. Y ou will
need to turn in printouts and a disk with a copy of the following four files: world.c,
species.c, creature.c, and darwin.c.

