pythonGraph Guide (v0.2.1)
[bookmark: _Toc16083121]pythonGraph Overview

The pythonGraph module lets developers output graphic images to a window. In addition, it provides functionality to interact with the user via the mouse and via individual keystrokes on the keyboard.
pythonGraph is available via the Python Package Management, pip. Alternatively, you can download the full source code at https://github.com/USAFA-CompSci110/pythonGraph.

[bookmark: _Toc16083122]Getting Started
To get started, import the pythonGraph library in your python file, as shown below:
[image:]
Then, open a pythonGraph window by calling the open_window function and specifying the dimensions of the window. A successfully opened window will appear with a white background.
pythonGraph utilizes a coordinate system where the origin (0, 0) is at the top-left hand corner. When the program requests the mouse's position or the location of a click, these will be given using the same coordinate system.
The picture below shows the coordinate layout for a pythonGraph window opened with open_window(400,300).

	Example Code

	[image:]

	

	Output

	[image:]

Table of Contents
pythonGraph Overview	1
Getting Started	1
1.	Drawing Operations	4
1.1	clear_window	5
1.2	draw_arc	6
1.3	draw_image	7
1.4	draw_rectangle	8
1.5	draw_circle	9
1.6	draw_ellipse	10
1.7	draw_line	11
1.8	draw_pixel	12
1.9	draw_text	13
2.	Mouse Operations	14
2.1	get_mouse_x and get_mouse_y	15
2.2	mouse_button_pressed	16
2.3	mouse_button_down	17
2.4	mouse_button_released	18
3.	Keyboard Operations	19
3.1	key_pressed	20
3.2	key_down	21
3.3	key_released	22
4.	Window Operations	23
4.1	open_window	24
4.2	close_window	25
4.3	get_window_height and get_window_width	26
4.4	is_open	27
4.5	set_window_title	28
4.6	update_window	29
4.7	delay	30
5.	Color Operations	31
5.1	create_color	32
5.2	create_random_color	33
6.	Music Operations	34
6.1	play_sound_effect	35
6.2	play_music	36
6.3	stop_music	37

1. [bookmark: _Drawing_Operations][bookmark: _Toc16083123]Drawing Operations
pythonGraph’s drawing routines can output a variety of shapes in a variety of colors.

Before using these operations, please note that:
· open_window must be called first, otherwise a run-time error will occur.
· You must call update_window before the result of the drawing routines will be visible on the screen.

Methods Described in this Chapter
· clear_window
· draw_arc
· draw_image
· draw_rectangle
· draw_circle
· draw_ellipse
· draw_line
· draw_pixel
· draw_text

1.1 [bookmark: _clear_window][bookmark: _Toc16083124]clear_window

	Usage

	clear_window(color)

	

	Description

	Clears the entire window to a particular color.

color can either be a predefined value (refer to pythonGraph.colors) or a custom color created using the create_color function.

	

	Example

	[image:]

	

	Output

	[image:]

1.2 [bookmark: _draw_arc][bookmark: _Toc16083125]
draw_arc

	Usage

	draw_arc(x1, y1, x2, y2, start_x, start_y, end_x, end_y, color, width)

	

	Description

	Draws a portion of the ellipse that is inscribed inside the given rectangle:
[image:]
The parameters (x1, y1) and (x2, y2) represent the two opposite corners of the rectangle.

The arc begins at the intersection of the ellipse and the line passing through the center of the ellipse and (start_x, start_y). It then proceeds counter-clockwise until it reaches the intersection of the ellipse and the line passing through the center of the ellipse to (end_x, end_y).

color specifies the arc’s color. This can either be a predefined value (refer to pythonGraph.colors) or a custom color created using the create_color function.

width is an optional parameter that specifies the “thickness” of the arc. Otherwise, it uses a default value.

	

	
Example

	[image:]

	

	
Output

	[image:]

1.3 [bookmark: _draw_image][bookmark: _Toc16083126]draw_image

	Usage

	draw_image(filename, x, y, width, height)

	

	Description

	Draws an image in the pythonGraph window.

filename refers to the name of the file (e.g., “image.png”) to be drawn. You can use any BMP, JPEG, or PNG file. The image file should be in the same folder as your python script.

x and y specify the upper-left coordinate where the image is to be drawn.

width and height represent the desired dimensions of the image. pythonGraph will try to scale the image to fit within these dimensions.

	

	Example

	For this example, assume that the file “falcon.png” exists.
[image:]

	

	Output

	[image:]

1.4 [bookmark: _draw_rectangle][bookmark: _Toc16083127]
draw_rectangle

	Usage

	draw_rectangle(x1, y1, x2, y2, color, filled, width)

	

	Description

	Draws a rectangle on the screen.

(x1, x2) is any corner of the rectangle
(x2, y2) is the opposite corner of the rectangle

color specifies the rectangle’s color. This can be:
· a predefined value (refer to pythonGraph.colors),
· a string representing the desired color (“BLUE”),
· or a custom color created using the create_color function.

filled can be either True or False, depending on whether or not the rectangle should be filled in or not, respectively.

width is an optional parameter that specifies the width of the rectangle’s border. If this value is not provided, a default value will be used.

	

	Example

	[image:]

	

	Output

	[image:]

1.5 [bookmark: _draw_circle][bookmark: _Toc16083128]draw_circle

	Usage

	draw_circle(x, y, radius, color, filled, width)

	

	Description

	Draws a circle at (x, y) with the specified radius

color specifies the circle’s color. This can be:
· a predefined value (refer to pythonGraph.colors),
· a string representing the desired color (“BLUE”),
· or a custom color created using the create_color function.

filled can be either True or False, depending on whether or not the circle should be filled in or not, respectively.

width is an optional parameter that specifies the width of the circle’s border. If this value is not provided, a default value will be used.

	

	Example

	[image:]

	

	Output

	[image:]

1.6 [bookmark: _draw_ellipse][bookmark: _Toc16083129]draw_ellipse

	Usage

	draw_ellipse(x1, y1, x2, y2, color, filled, width)

	

	Description

	Draws an ellipse inscribed in the rectangle whose two diagonally opposite corners,
(x1, y1), (x2, y2) are given:

[image:]

color specifies the ellipse’s color. This can be:
· a predefined value (refer to pythonGraph.colors),
· a string representing the desired color (“BLUE”),
· or a custom color created using the create_color function.

filled can be True or False, depending on whether or not the ellipse is filled in or not, respectively.

width is an optional parameter that specifies the width of the ellipse’s border. If this value is not provided, a default value will be used.

	

	Example

	[image:]

	

	Output

	[image:]

1.7 [bookmark: _draw_line][bookmark: _Toc16083130]draw_line

	Usage

	draw_line(x1, y1, x2, y2, color, width=2)

	

	Description

	Draws a line segment from (x1, y1) to (x2, y2) in the given color:

color specifies the line’s color. This can be:
· a predefined value (refer to pythonGraph.colors),
· a string representing the desired color (“BLUE”),
· or a custom color created using the create_color function.

width is an optional parameter that specifies the width of the line. If this value is not provided, a default value will be used.

	

	Example

	[image:]

	

	Output

	[image:]

1.8 [bookmark: _draw_pixel][bookmark: _Toc16083131]draw_pixel

	Usage

	draw_pixel(x, y, color)

	

	Description

	Changes the color of a single pixel at location (x, y).

color specifies the color for the pixel. This can be:
· a predefined value (refer to pythonGraph.colors),
· a string representing the desired color (“BLUE”),
· or a custom color created using the create_color function.

	

	Example

	[image:]

	

	Output

	[image:]

1.9 [bookmark: _draw_text][bookmark: _Toc16083132]draw_text

	Usage

	draw_text(text, x, y, color, font_size)

	

	Description

	Writes the specified text string to the pythonGraph window.

text represents the string to be written. This can either be a single string (e.g., “Hello World”) or a concatenated string (e.g., “Bob is “ + str(5) + “ years old!”)

(x,y) denotes the coordinate of the top left corner of the string

color specifies the color for the pixel. This can be:
· a predefined value (refer to pythonGraph.colors),
· a string representing the desired color (“BLUE”),
· or a custom color created using the create_color function.

font_size is an optional parameter that specifies the size of the text, in pixels. If this value is not provided, a default value will be used.

	

	Example

	[image:]

	

	Output

	[image:]

2. [bookmark: _Toc16083133]Mouse Operations
pythonGraph can determine the current location of the mouse. It can also determine whether or not a mouse click has occurred.

Before using these operations, please note that:
· open_window must be called first, otherwise a run-time error will occur.
· The window must be in focus. If the pythonGraph window is not on top, the user may have to click on it once before the application will respond to user mouse clicks.

Methods Described in this Chapter
· get_mouse_x
· get_mouse_y
· mouse_button_pressed
· mouse_button_down
· mouse_button_released

2.1 [bookmark: _get_mouse_x_and_get_mouse_y][bookmark: _Toc16083134]get_mouse_x and get_mouse_y

	Usage

	get_mouse_x()
get_mouse_y()

	

	Description

	These functions output the current x or y coordinate of the mouse.

	

	Example

	The following lines of code will store the mouse’s current x and y coordinate in x_coordinate, and y_coordinate, respectively.
[image:]

	

2.2 [bookmark: _mouse_button_pressed][bookmark: _Toc16083135]mouse_button_pressed

	Usage

	mouse_button_pressed(which_button)

	

	Description

	Returns True if the specified mouse button is clicked, and False otherwise. This function will only return True once per mouse click.

which_button can be one of the following values:
· “LEFT”
· “RIGHT”
· “CENTER”

If the window is not on top, the user may have to click on it once before this function will be called.

	

	Example

	The following code snippet will print a string when the left mouse button is clicked:
[image:]

2.3 [bookmark: _mouse_button_down][bookmark: _Toc16083136]mouse_button_down

	Usage

	mouse_button_down(which_button)

	

	Description

	Returns True if the specified mouse button is held down, and False otherwise. Unlike mouse_button_pressed, this function will keep returning True for as long as the button is held down.

which_button can be one of the following values:
· “LEFT”
· “RIGHT”
· “CENTER”

If the window is not on top, the user may have to click on it once before this function will be called.

	

	Example

	The following code snippet will print a string when the left mouse button is pressed:
[image:]

2.4 [bookmark: _mouse_button_released][bookmark: _Toc16083137]mouse_button_released

	Usage

	mouse_button_released(which_button)

	

	Description

	Returns True if the specified mouse button is released, and False otherwise.

which_button can be one of the following values:
· “LEFT”
· “RIGHT”
· “CENTER”

If the window is not on top, the user may have to click on it once before this function will be called.

	

	Example

	The following code snippet will print a string when the left mouse button is released:
[image:]

3. [bookmark: _Toc16083138]Keyboard Operations
These functions allow pythonGraph to determine if a keystroke has occurred.

Before using these operations, please note that:
· open_window must be called first, otherwise a run-time error will occur.
· The window must be in focus. If the pythonGraph window is not on top, the user may have to click on it once before the application will respond to user keyboard.

Methods Described in this Chapter
· key_pressed
· key_down
· key_released

3.1 [bookmark: _key_pressed][bookmark: _Toc16083139]key_pressed

	Usage

	key_pressed(which_key)

	

	Description

	Returns True if the specified key is pressed, and False otherwise. This function will only return True once per keyboard press.

which_key is a string that represents the key that we want to check. For example:
· ‘a’
· ‘f1’
· ‘left’
· ‘escape’

If the window is not on top, the user may have to click on it once before this function will be called.

	

	Example

	The following code snippet will print a string when the ‘a’ key is pressed:
[image:]
The following code snippet will print a string when the up arrow key is pressed:
[image:]

3.2 [bookmark: _key_down][bookmark: _Toc16083140]key_down

	Usage

	key_down(which_button)

	

	Description

	Returns True if the specified key is held down, and False otherwise. Unlike key_pressed, this function will keep returning True for as long as the key is held down.

which_key is a string that represents the key that we want to check. For example:
· ‘a’
· ‘f1’
· ‘left’
· ‘escape’

If the window is not on top, the user may have to click on it once before this function will be called.

	

	Example

	The following code snippet will repeatedly print a string for as long as the ‘a’ button is pressed:
[image:]

3.3 [bookmark: _key_released][bookmark: _Toc16083141]key_released

	Usage

	key_released(which_button)

	

	Description

	Returns True if the specified key is released, and False otherwise.

which_key is a string that represents the key that we want to check. For example:
· ‘a’
· ‘f1’
· ‘left’
· ‘escape’

If the window is not on top, the user may have to click on it once before this function will be called.

	

	Example

	The following code snippet will print a string when ‘a’ key is released:
[image:]

4. [bookmark: _Toc16083142]Window Operations
The following functions allow pythonGraph to open, close, and update the graphics window.

Methods Described in this Chapter
· open_window
· close_window
· get_window_height
· get_window_width
· is_open
· set_window_title
· update_window

4.1 [bookmark: _open_window][bookmark: _Toc16083143]open_window

	Usage

	open_window(width, height)

	

	Description

	Creates a graphics window of the specified width and height (in pixels).

Important Notes:
· You can only have one pythonGraph window open at a time. If you attempt to open a second, an error will occur.
· The width and height dimensions cannot be negative

	

	Example

	The following code snippet will open a 400 x 300 pixel window:

[image:]

4.2 [bookmark: _close_window][bookmark: _Toc16083144]close_window

	Usage

	close_window(width, height)

	

	Description

	Closes the pythonGraph window. A run-time error will occur if the graphics window is not open.

	

	Example

	[image:]

4.3 [bookmark: _get_window_height_and_get_window_wi][bookmark: _Toc16083145]get_window_height and get_window_width

	Usage

	get_window_height()
get_window_width()

	

	Description

	Returns the height and width, respectively, of the window.

	

	Example

	The following snippet will store the window’s height and width in the variables h and w, respectively.
[image:]

4.4 [bookmark: _is_open][bookmark: _Toc16083146]is_open

	Usage

	is_open()

	

	Description

	Returns True if the pythonGraph window is currently open, and False otherwise.

	

	Example

	The following code snippet will output the state of the window.

[image:]

4.5 [bookmark: _set_window_title][bookmark: _Toc16083147]set_window_title

	Usage

	set_window_title(title)

	

	Description

	Changes the title of the pythonGraph window.

[image:]

	

	Example

	[image:]

	

	Output

	[image:]

4.6 [bookmark: _update_window][bookmark: _Toc16083148]update_window

	Usage

	update_window()

	

	Description

	Updates the visual contents of the pythonGraph window. All of the draw functions called prior to this will now appear on the screen.

Every pythonGraph program should call this function at least once per frame (see example below). Without this call, the application will freeze.

	

	Example

	[image:]

	

	Output

	[image:]

4.7 [bookmark: _Toc16083149]delay

	Usage

	delay(time)

	

	Description

	Pauses the application for the specified amount of time (in milliseconds).

This function is typically called during an animation loop in order to allow the image to stay on the screen long enough for the user to see it.

The time parameter expects a positive integer.

	

	Example

	[image:]

5. [bookmark: _Toc16083150]Color Operations
pythonGraph comes with a predefined set of colors, as well as methods to easily generate custom and/or random colors as needed.

Predefined colors:
The Official and “Friendly” names can be used interchangeably.
	Official Name
	String Name
(Case Insensitive)

	pythonGraph.colors.BLACK
	“BLACK”

	pythonGraph.colors.BLUE
	[bookmark: _GoBack]	“BLUE”	

	pythonGraph.colors.BROWN
	“BROWN”

	pythonGraph.colors.CYAN
	“CYAN”

	pythonGraph.colors.GRAY
	“GRAY”

	pythonGraph.colors.GREEN
	“GREEN”

	pythonGraph.colors.LIGHT_BLUE
	“LIGHT_BLUE”

	pythonGraph.colors.LIGHT_CYAN
	“LIGHT_CYAN”

	pythonGraph.colors.LIGHT_GRAY
	“LIGHT_GRAY”

	pythonGraph.colors.LIGHT_GREEN
	“LIGHT_GREEN”

	pythonGraph.colors.LIGHT_MAGENTA
	“LIGHT_MAGENTA”

	pythonGraph.colors.LIGHT_RED
	“LIGHT_RED”

	pythonGraph.colors.MAGENTA
	“MAGENTA”

	pythonGraph.colors.RED
	“RED”

	pythonGraph.colors.WHITE
	“WHITE”

	pythonGraph.colors.YELLOW
	“YELLOW”

	pythonGraph.colors.ORANGE
	“ORANGE”

Methods Described in this Chapter
· create_color
· create_random_color

5.1 [bookmark: _create_color][bookmark: _Toc16083151]create_color

	Usage

	create_color(red, green, blue)

	

	Description

	Returns a color with the specified red, green, and blue combination.

red, green, and blue are all integer values between 0-255. Refer to https://www.colorspire.com/rgb-color-wheel/ to see how combinations of these three colors can be used to create other colors.

	

	Example

	[image:]

5.2 [bookmark: _create_random_color][bookmark: _Toc16083152]create_random_color

	Usage

	create_random_color()

	

	Description

	Returns a color with a random red, green, and blue combination.

	

	Example

	[image:]

6. [bookmark: _Toc16083153]Music Operations
pythonGraph provides limited functions to play sound effects and background music. A sound effect is defined as a short sound clip (< 1s). Background music, in contrast, can range from seconds to minutes, and can be set to be played once or on a continuous loop.
WAV and MP3 files are currently supported.

Methods Described in this Chapter
· play_sound_effect
· play_music
· stop_music

6.1 [bookmark: _play_sound_effect][bookmark: _Toc16083154]play_sound_effect

	Usage

	play_sound_effect(filename)

	

	Description

	Plays the specified sound file once, if a channel is available.

The filename parameter specifies where the file to be played is located on the computer. Typically, your sound effect files should be in the same folder as your python application.

This method supports WAV and MP3 files. The larger the file, the longer it will take for the application to load and play it.

	

	Example

	This snippet will play the sound “sound.mp3”, assuming that the file is in the same folder.

[image:]

6.2 [bookmark: _play_music][bookmark: _Toc16083155]play_music

	Usage

	play_music(filename, loop)

	

	Description

	Plays the specified music file, if a channel is available.

The filename parameter specifies where the file to be played is located on the computer. Typically, your music files should be in the same folder as your python application.

The loop parameter is optional, and specifies whether or not to play the music on a continuous loop. By default, this value is set to True.

This method supports WAV and MP3 files. The larger the file, the longer it will take for the application to load and play it.

	

	Example

	This snippet will play the sound “music.mp3”, assuming that the file is in the same folder.

[image:]

6.3 [bookmark: _stop_music][bookmark: _Toc16083156]stop_music

	Usage

	stop_music()

	

	Description

	Stops any music that is currently playing. This function can be safely called, even if music is not playing.

	

	Example

	[image:]

31 | Page

image2.png
4 pythonGraph.open_window(400, 300)

image3.png
Coordinate X=0, Y=0

§J Python Graph Demonstration - X

Coordinate X=399, Y=299

image4.png
5 pythonGraph.clear_window(pythonGraph.colors.RED)

image5.png

image6.png
(x1,y1)

Center

/’ (end_x, end_y)

(start_x, start_y)

—

(x2,y2)

image7.png
3 pythonGraph.open_graph_window (400, 300)
4 pythonGraph.draw_arc(1, 100, 200, 1, 250, 50, 2, 2, pythonGraph.colors.BLUE, 3)

image8.png
£ pythonGraphvi... —

TN

image9.png
3 pythonGraph.open_graph_window(400, 300)
4 pythonGraph.draw_image("falcon.png”, 100, 108, 150, 150)

image10.png
§2 pythonGraph v1....

image11.png
2 pythonGraph.open_window(42e, 300)
4 pythonGraph.draw_rectangle(56, 156, 250, 25, pythonGraph.colors.RED, True)

image12.png
£ pythonGraphvi... —

image13.png
pythonGraph.open_window(460, 300)
4 pythonGraph.draw_circle(208, 150, 58, pythonGraph.colors.GREEN, True)

image14.png
£ pythonGraphvi... —

image15.png
(x1,y1)

(x2,y2)

image16.png
pythonGraph.open_window (400, 300)
4 pythonGraph.draw_ellipse(100, 100, 300, 200, pythonGraph.colors.BLUE, False, 4)

image17.png
£ pythonGraphvi... —

image18.png
3 pythonGraph.open_window(4¢e, 30¢)
4 pythonGraph.draw_line(58, 58, 300, 258, pythonGraph.colors.BLUE, 3)

image19.png
£ pythonGraphvi... —

image20.png
pythonGraph.open_window(400, 300)
4 pythonGraph.draw_pixel(58, 50, pythonGraph.colors.RED)

image21.png
Q pythonGraph v1... —

Just trust us, it’s there.

image22.png
pythonGraph.open_window(400, 300)
4 pythonGraph.draw_text("Hello World!", 58, 58, pythonGraph.colors.RED, 50)

image23.png
£ pythonGraphvi... —

Hello World!

image24.png
4 x_coordinate
© y_coordinate

pythonGraph.get_mouse_x()
pythonGraph. get_mouse_y()

image25.png
5 if pythonGraph.mouse_button_pressed("LEFT"):
6 print(“Left Mouse Button Clicked")

image26.png
5 if pythonGraph.mouse_button_down("LEFT"):
6 print(“Left Mouse Button is Still Down!")

image27.png
5 if pythonGraph.mouse_button_released("LEFT"):
6 print(“Left Mouse Button is Still Down!")

image28.png
© if pythonGraph.key_pressed('a’):
6 print("Key Pressed!")

image29.png
@ if pythonGraph.key_pressed(‘up'):
9 print("Up Arrow Pressed!")

image30.png
5 if pythonGraph.key_down('a’):
6 print("Key is still down

image31.png
5 1if pythonGraph.key_released('a’):
6 print("Key was released

image32.png
pythonGraph.open_window (400, 300)

image33.png
16 pythonGraph.close_window()

image34.png
pythonGraph.get_window_height()
pythonGraph. get_window_width()

image35.png
& if pythonGraph.is_open():
9 print(“The window is open")
10 else:

1 print("The window is closed")

image36.png
Title Goes Here

£J Python Graph Demonstration

image37.png
pythonGraph.open_window(400, 302)
4 pythonGraph.set_window_title("Hello World")

image38.png
£2 Hello World

image39.png
waw

pythonGraph.open_window(408, 300)
pythonGraph.draw_line(1, 1, 399, 299, pythonGraph.colors.BLUE)

while pythonGraph.window_not_closed():
pythonGraph. update_window()

image40.png
pythonGraph v1 § pythonGraph v1... —

Before update window () After update_window ()

image41.png
23 # For a 60 frame per second animation, use a delay of 1000/60, or 22ms
24 pythonGraph.delay(22)

image42.png
5 my_custom_color = pythonGraph.create_color(128, 128, 64)

image43.png
my_random_color = pythonGraph.create_random_color()

image44.png
pythonGraph.play_sound_effect("sound.mp3")

image45.png
5 pythonGraph.play_music("music.mp3")

image46.png
pythonGraph.stop_music()

image1.png
1 import pythonGraph

