
Melody Player
(CS1 array version)

The purpose of this assignment is to practice writing algorithms that use 1-D and 2-D arrays.

This problem concerns playing music.  A song consists of notes, each of which has a length (duration) and pitch.  The
pitch of  a note is described with a letter ranging from A to G.  As 7 notes would not be enough to play very
interesting music, there are multiple  octaves;  after we reach note G we start  over at  A.  Each set  of  7 notes is
considered an octave.  Notes may also be accidentals, meaning that they are not in the same key in which the music is
written.  We normally notate this by calling them sharp, flat, or natural.  Music also has silences that are called rests.

For this program we will be representing notes using scientific pitch notation. This style of notation represents each
note as a letter and a number specifying the octave it belongs to. For example, middle C is represented as C4.  You
do not need to understand any more than this about scientific pitch notation, but you can read more about it here:

• http://en.wikipedia.org/wiki/Scientific_pitch_notation
You will write a Melody class that uses an array to represent a song comprised of  a series of  notes.  It may have
repeated sections; as we don't like to have any redundancy, we will only store one copy of a repeated chunk of notes.
Your Melody class will read files in a format described below and represent the song's notes using an array of Note
objects.  The most challenging part of this assignment is handling melodies that contain repeated sections.

Input File Format:
Music is usually printed like the example sheet music at right.  The
notes  are  a  series  of  dots.  Their  position in  relation to the  lines
determines their pitch and their tops and color, among other things,
determine their length. Since it would be difficult for us to read input
in this style, we will read input from a text file in a specific format. 

An example input file is shown at right.  The first two lines contain the
song  title and song  artist,  respectively.  The third line contains the
number of notes in the song; this is equal to the number of lines that
will follow in the file.  Each subsequent line represents a single note in
the following format:

• duration  pitch  octave  accidental  repeat

The first number on each line describes the duration of  the note in
seconds.  The next letter describes the pitch of  the note, using the
standard letters A-G or R for a rest.  The third token is the octave that
the note is in.  The fourth is the note's accidental value of sharp, flat,
or natural.  (For a rest, the octave and accidental are omitted.)  The final token
indicates whether the note is the start or stop of  a repeated section:
true if  so, and false otherwise.  In the example at right, notes 3-5
and 9-12 (lines 6-8 and 12-15) represent two repeated sections.  The
meaning of the data is that the song should play notes 1, 2, 3, 4, 5, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12, 9, 10, 11, 12, 13.  Our format does not allow
nested repetition, nor sections that repeat more than twice.

Example input file (line numbers added):

 1|  My Song Title
 2|  Joe Smith
 3|  13
 4|  0.2 C 4 NATURAL false
 5|  0.4 F 4 NATURAL false
 6|  0.2 F 4 NATURAL true
 7|  0.4 G 4 NATURAL false
 8|  0.2 A 4 NATURAL true
 9|  0.2 A 4 NATURAL false
10|  0.4 R false
11|  0.2 B 4 NATURAL false
12|  0.2 C 4 NATURAL true
13|  0.4 D 4 NATURAL false
14|  0.2 C 5 NATURAL false
15|  0.2 A 4 NATURAL true
16|  0.4 D 4 NATURAL false

http://en.wikipedia.org/wiki/Scientific_pitch_notation


Note class (provided):
We have provided you with a class named Note that your Melody class will use.  A Note object represents a single
musical note that will form part of  a melody.  It keeps track of  the length (duration) of  the note in seconds as a
double, the note's pitch (A-G, or R if  the note is a rest), the octave as an int, and the accidental (sharp, natural or
flat). Each Note object also uses a boolean field to keep track of  whether it is the first or last note of  a repeated
section of the melody.  You pass this information to the Note's constructor when you create a Note object.

The Note uses two types of constants named Pitch and Accidental.

• A Pitch is a constant from Pitch.A through Pitch.G or Pitch.R, meaning the frequency of the note.
• An Accidental indicates whether a note is sharp, flat, or neither using the constants Accidental.SHARP, 

Accidental.FLAT, and Accidental.NATURAL respectively.

The Note class provides the following constructors and methods that you should use in your program.  The various
get and is methods are accessors that return the values that you previously passed to the Note constructor.

Method Description

new Note(duration, pitch, octave,
         accidental, repeat)

Constructs a new Note object.

new Note(duration, repeat) Constructs  a  new  Note object,  omitting  the  pitch,  octave  and
accidental values.  Used to construct a rest (Pitch.R).

getAccidental(), getDuration(),
getOctave(), getPitch(),
isRepeat()

Returns the state of the note as passed to the constructor.

play() Plays the note so that it can be heard from the computer speakers.

setAccidental(accidental), 
setDuration(duration), 
setOctave(octave), setPitch(pitch),
setRepeat(repeat)

Sets aspects of the state of the note based on the given value.

toString() Returns a text representation of the note.

You can look at the contents of the provided Note.java to answer any further questions about how it works.

Melody Class (for you to implement):

Implement the Melody class and its methods listed here and described in detail on the following pages:

• getTitle, getArtist, getTotalDuration (information about the song's state)
• play (plays the song on the computer's speakers)
• octaveDown, octaveUp, changeDuration, reverse (methods that manipulate the song's state)

You will need several fields to implement all of the required behavior.  Your class
must use a field that is an array of  Note objects to store the notes in the song.
You will need other fields to implement all of the behavior shown below, but you
should not create any other data structures (such as arrays or lists) to help you.

Test your Melody class by running our instructor-provided class Main that allows
you to select text files and play them.  Each time you click Load and choose a file
from the disk, a  Melody object will be created for that file.  Most of  the other
buttons essentially map to the various methods in your Melody class.  When the
user clicks Play, your  Melody object's  play method is called.  When the user
clicks Reverse, your Melody object's reverse method is called.  And so on.  Not
every button directly maps to a  Melody method; for example, the Stop button
tells the underlying audio system to halt,  but this has the effect of  making it
temporarily ignore any further notes that your Melody code tries to play.



public Melody(String filename)
In this constructor you should populate your melody's array of  notes by reading note data from the specified file.
The file format was described previously; it begins with the song title, author, and number of notes, followed by a
series of lines, each of which describes a single Note object.  You should tokenize the contents of each note line,
use those tokens to construct a Note object, and put this Note into your internal array.

To convert  a  string  into  a  Pitch or  Accidental constant  value,  like  turning  the  string  "SHARP" into  the
equivalent constant of Accidental.SHARP, use the valueOf method, as shown in the following example:
String s = input.next();                   // "SHARP"
Accidental acc = Accidental.valueOf(s);    // Accidental.SHARP
The constructor is the only part of your code that should read data from the input file.  All other methods should
refer to your internal array of notes.  Re-reading the file to implement other methods is forbidden.

Assume valid input.  You may assume that the file exists, is readable, and that its contents exactly follow the
format described on the previous page.  The file contains exactly the number of  note lines equal to the number
written on the file's third line.  You may assume that each note line contains a valid note, such as  "1.2 C 4
NATURAL false" for a 1.2-second natural C note in the 4th octave, or "0.4 R false" for a 0.4-second rest.  No
line will contain a note other than A-G or R (rest); none will contain any badly formatted tokens or lines; etc.

public String getTitle()
In this method you should return the title of the song, as was found in the first line of the song's input file.

public String getArtist()
In this method you should return the artist of the song, as was found in the second line of the song's input file.

public double getTotalDuration()
In this method you should return the total duration (length) of the song, in seconds.  In general this is equal to the
sum of the durations of  the song's notes, but if  some sections of  the song are repeated, those parts count twice
toward the total.  For example, a song whose notes' durations add up to 6 seconds that has a 1.5-second repeated
section and a 1-second repeated section has a total duration of (6.0 + 1.5 + 1.0) = 8.5 seconds.

public void play()
In this method you should play your melody so that it can be heard on the computer's speakers.  Essentially this
consists of calling the play method on each Note in your array.  The notes should be played from the beginning
of  the list to the end, unless there are notes that are marked as being part of  a repeated section.  If  a series of
notes represents a repeated section, that sequence is played twice.  For example, in the diagram below, suppose the
notes at indexes 3, 5, 9, and 12 all indicate that they are start/end points of  repeated sections (their  isRepeat
method returns true).  In this case, the correct sequence of note indexes to play is 0, 1, 2, 3, 4, 5, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 9, 10, 11, 12, 13.  Note that notes at indexes 3-5 and 9-12 are played twice in our example.

This method should not modify the state of your array.  Also, it should be possible to call play multiple times and
get the same result each time.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

T T T T

diagram of  array of  notes with repeated sections at indexes 3-5 and 9-12



public boolean octaveDown()
In this method you should modify the state of the notes in your internal array so that they are all exactly 1 octave
lower in pitch than their current state.  For example, a C note in octave 4 would become a C note in octave 3.
Rests are not affected by this method, and the notes' state is otherwise unchanged other than the octaves.

There is one special case to watch out for.  Octave 1 is the lowest possible octave allowed by our system.  If  any
note(s) in your song are already down at octave 1, then the entire octaveDown call should do nothing.  In such a
case, no notes (even ones above octave 1) should be changed; the call should have no effect.

You should return true if this method lowered the octave, and false if you hit the above special case.

public boolean octaveUp()
In this method you should modify the state of the notes in your internal array so that they are all exactly 1 octave
higher in pitch than their current state.  For example, a C note in octave 4 would become a C note in octave 5.
Rests are not affected by this method, and the notes' state is otherwise unchanged other than the octaves.

There is one special case to watch out for.  Octave 10 is the highest possible octave allowed by our system.  If any
note(s) in your song are already up at octave 10, then the entire octaveUp call should do nothing.  In such a case,
no notes (even ones below octave 10) should be changed; the call should have no effect.

You should return true if this method raised the octave, and false if you hit the above special case.

public void changeTempo(double ratio)
In this method you should scale the duration of each note in your melody by the given ratio.  For example, passing
a ratio of  1.0 will do nothing, while a ratio of  2.0 will make each note's duration twice as long (slow down
the song), or a ratio of 0.5 will make each note half as long (speed up the song).

public void reverse()
In this method you should reverse the order of the notes in your melody, so that future calls to play would play
the notes in the opposite of  the order they were in before the call.  For example, a song containing notes A, F,
G, B would become B, G, F, A.  This amounts to reversing the order of the elements of your internal array of
notes.  Do not make a complete copy of  your internal array, and do not create any other data structures such as
arrays, strings, or lists; just modify your array in-place.  You must write the reversal code yourself; you should not
use an existing Java array reversal library.

public String toString()   (optional)

You are not required to write a  toString method in your Melody class, but if  you do, it will be called by our
Main program when any operations are performed.  For example, after loading a song from a file, or reversing the
song, or changing duration or octaves, the Main program prints out the toString representation of your Melody
on the console.  If  you do write  a  toString,  you can return any string you want.   This  may be useful  for
debugging.  Recall that Arrays.toString returns a string representation of an array.

Creative Aspect, mysong.txt:
Along with your Melody class, turn in a file named mysong.txt that contains song data that you have made yourself.
This file can have any contents you want, so long as it follows our specified song file format with the title on the
first line, the song's artist or creator on the second line, the number of  notes on the third line, and a valid note on
each line after that.  You can make up a song of your own, or you can make a version of an existing song that you
like (Mario theme?  Lady Gaga song?  The Star Spangled Banner?  etc.).



Possible Extra Features:

There are many possibilities for extra features that you can add if you like.  Here are a few ideas:

• Change key: Can you change a melody from one key to another?  This is harder than it sounds because of
complexities in music and keying.  Read online about different keys and how to convert between them.

• Start playing from a given time offset: Write a variation of  the play method that accepts a start time offset as a
parameter and plays the melody's notes starting from that time offset.

• Merge two melodies: Write a method that accepts another Melody as a parameter and appends its notes to the
end of the current Melody.

• Additional melody manipulation: Write more methods that modify your melody's song.
• Lyrics: How would you represent a song that had lyrics that display when certain notes are played?
• Playlist: Write another class representing a list of melodies to be played in order.
• Ability to visually compose a song: Provide a user interface where the user can click piano keys to input a song.

Suggested Style Guidelines

Use descriptive  names for variables and methods.  Format your code using indentation and whitespace.  Avoid
redundancy using methods, loops, and factoring.  Use descriptive comments, including the top of  each .java file,
atop each method, inline on complex sections of code, and next to each field.

Try to minimize the number of fields and generally not make a value a field unless it is necessary to do so.  Write a
brief  comment on each field in your code explaining its purpose and why it is necessary to make that into a field.
All fields must be private.  If there are important fixed values used in your code, declare them as final constants.

Work to avoid redundancy.  For example, if  two or more specified methods have similar behavior, make one call
the other, or create a private method that captures the redundancy and is called by both.


	Melody Player
	Input File Format:
	Note class (provided):
	Melody Class (for you to implement):
	Creative Aspect, mysong.txt:
	Possible Extra Features:
	Suggested Style Guidelines


