
Stanford CS 106A Eric Roberts

Assignment 4—Turtle Graphics

In the commercial world, software systems are rarely written by a single individual.
Most applications are developed by teams of programmers who work on different parts of
the overall system. Each programmer is responsible for developing one or more classes,
which are then combined with the other components to create the finished application.

In this assignment, your job is to implement a few critical pieces of an application that
lets the user program a turtle to move around the graphics window, drawing pictures as it
goes. The code to display a turtle on the screen is already implemented by the GTurtle
class, so you won’t need to write that part. Moreover, because the chapters that teach you
how to use interactors are still a couple of weeks in the future, we’ve taken care of the
code to manage the user interface. The part that’s left for you to implement is taking the
text of the turtle program, breaking it up into individual instructions, and then translating
those instructions into the appropriate method calls to the GTurtle object. The code you
need to write involves a lot of string manipulation using the various methods provided by
Java’s String class.

Turtle graphics
The Karel the Robot application you used at the beginning of the quarter is an example of
what computer science educators call a microworld—a simple programming environment
that is small enough for novices to master easily. Karel, however, is by no means the
only microworld. Many institutions use a microworld called Alice that was developed at
Carnegie Mellon by the late Randy Pausch, whose Last Lecture video on YouTube has
been viewed more than 14 million times. Before either Karel or Alice existed, however,
Seymour Papert at MIT developed the Logo language and used it to teach programming
to children, who used it to maneuver a robotic “turtle” that could make drawings on
paper. In 1980, Professor Papert wrote a wonderful book called Mindstorms that
describes his experiences with the Logo turtle and offers several important insights into
the dynamics of learning. Figure 1 shows the cover of Mindstorms, along with a picture
from the book showing children enjoying the process of learning to program.

The application you will help to develop in this assignment enables users to play with
a virtual turtle on the computer screen. Like the Logo turtle, the virtual turtle in this
application can move forward, turn left, and turn right. In contrast to Karel’s world, each
of these operations takes a parameter that indicates either how far the turtle should move
or how many degrees it should turn. The turtle also comes equipped with a virtual pen in
its belly that it can use to draw a line on the graphics window.

 – 2 –

The programming model for the CS 106A version of the turtle is different from the
Logo-based model that Seymour Papert used in his book. Partly because we need to
emphasize string manipulation at this point in the course—and partly because doing so
makes it easy to draw some marvelous fractal patterns—our turtle programs will be
strings consisting of a sequence of commands. The individual commands consist of a
single letter, which are usually followed by a number. For example, the command F120
asks the turtle to move forward 120 pixels in the direction it is facing. The command L90
asks the turtle to turn left 90 degrees. A program is simply a sequence of these
commands. The program

F120 L90 F120 L90 F120 L90 F120 L90

moves the turtle in a square 120 pixels on a side, ending up in the same position and
orientation as when it started, as follows:

The turtle language also includes the concept of repetition. If you enclose a sequence
of commands in curly braces, you can repeat that entire sequence any number of times by
preceding that block of commands with the letter X followed by the desired number of
repetitions. The program to draw a square can therefore be simplified like this:

Figure 1. Cover and picture from Mindstorms

 – 3 –

X4 {F120 L90}

In English pseudocode form, this program therefore has the following effect:

Repeat the following sequence of commands 4 times
 Move forward 120 pixels.
 Turn left 90 degrees.

Repetitions can be nested to any level. You could, for example, use the program

X2 {X4 {F120 L90} L10}

to draw two squares with a 10-degree left turn in the middle. The figure after drawing
these two squares looks like this:

If you instead repeated the code to draw a square 36 times, the 10-degree turn will go all
the way around a 360-degree circle to create the flower diagram shown in Figure 2,
which comes from an example in the Mindstorms book.

Figure 2. The TurtleGraphics application with a flower pattern

 – 4 –

The TurtleGraphics application
The screenshot in Figure 2 shows the turtle flower program and the program that
produced it in the context of the entire TurtleGraphics application. If you download
the starter files for this assignment, load them into Eclipse, and start it up, you will see
the user interface shown in Figure 2, all ready to go. You can type in turtle programs in
the editor window on the right side of the window and then test those programs out by
hitting the Run button. You can control the speed of the turtle using the speed bar and
even single step the program through individual commands using the Step button. You
can load and save files in the usual way by selecting the appropriate options from the File
menu. In fact, the entire application works exactly as it is supposed to, including all the
suggested extensions described beginning on page 14.

The fact that the application already works as soon as you download the starter files
does not mean you’re done with the assignment. Your job is to reimplement three parts
of the TurtleGraphics application so that you get experience in writing classes,
manipulating strings, and integrating new code into an existing application—all of which
are essential programming skills. The parts you have to implement are as follows:

1. Implement the TurtleTokenizer class that divides a string into individual tokens.
2. Implement the execute method that gets the turtle to execute a program.
3. Implement the replaceAction method that supports a find-and-replace operation.

Each of these subtasks is described in one of the sections that follow.

Phase 1—Implement the TurtleTokenizer class
Your first task in this assignment is to implement the TurtleTokenizer class, which is
responsible for dividing up a program string into individual commands. This class is
similar to the StringTokenizer described on page 278 of The Art and Science of Java
and implements the same set of methods. The reason for implementing a new class is
that programs in the TurtleGraphics application have different rules for forming tokens
and therefore need a different implementation of an appropriate tokenizer class.

The most common kind of token in a turtle program is a command character (typically
a letter, although any non-whitespace character is legal), which is typically followed by a
sequence of decimal digits. For example, the command F120, which moves the turtle
forward 120 pixels, is a single token in a turtle program. The digits, however, are
optional. If you supply the L or R command without any digits, the TurtleGraphics
application assumes that you want the turtle to turn 90˚ in the indicated direction.
Similarly, executing the F command without any digits moves forward 50 pixels as a
default. In addition, spaces are not required between tokens but are permitted for
readability. These rules mean, for example, that you could rewrite the program that
draws a square as

F120LF120LF120LF120L

even though doing so makes the program much more difficult for people to read. The
TurtleTokenizer class, however, has no trouble breaking this string into substrings that

 – 5 –

fit the definition of a token. If you use this string to initialize a TurtleTokenizer object,
successive calls to nextToken should return the following sequence of eight tokens:

For the X command that repeats a block of code, it is necessary to define an additional
type of token. For example, the program that uses the X command to draw a square looks
like this:

X4 {F120 L90}

When you write the code to execute this program in phase 2, you need to recognize that
everything inside the braces needs to be repeated. One of the easiest ways to implement
tokens enclosed in braces is to have the TurtleTokenizer return the entire block as a
single token, so that successive calls to nextToken given this program should return the
following token sequence:

Recognizing tokens enclosed in braces is slightly harder than this example makes it seem,
because it is not enough simply to collect the characters up to the next closing brace. As
the Flower.t program in Figure 2 illustrates, the code can include nested instances of the
X command. Thus, given the program

X36 {X4 {F120 L90} L10}

the second token should include all the characters up to the matching close brace, as
follows:

The easiest strategy for finding the matching close brace is to keep a counter, adding one
for each open brace and subtracting one for each close brace until the count hits zero.

Like most classes, TurtleTokenizer encapsulates state information along with a set
of methods for manipulating that state. When you create a TurtleTokenizer object, the
constructor has to initialize the internal state information so that subsequent calls to
nextToken and hasMoreTokens can return the correct results. Thus, if you call

TurtleTokenizer tokenizer = new TurtleTokenizer("X4 {F120 L90}");

the constructor must store the string "X4 {F120 L90}" in an instance variable so that the
object can keep track of what the input string is. In addition, the constructor needs to
record the fact that the tokenizer is at the beginning of the string. If you then call

tokenizer.nextToken()

the method needs to assemble the X and the digits that follow it to return the token "X4".
In the process, the object needs to update its internal state to keep track of the fact that
these characters have now been scanned. Calling nextToken again skips over the space,
sees the opening brace, and then collect characters up to the matching brace at the end of
the token "{F120 L90}".

 – 6 –

The starter code for the TurtleTokenizer class appears in Figure 3. Your job in this
phase is to supply the implementations of the constructor and the methods nextToken

Figure 3. The starter file for the TurtleTokenizer class

 – 7 –

and hasMoreTokens so that the TurtleTokenizer class behaves as described in the
earlier parts of this section. To do so, you will have to declare a few instance variables,
and you may find it helpful to define a private method or two. You should not, however,
have to write a lot of code. The whole of the implementation will almost certainly fit on
two pages.

Even though the implementation of TurtleTokenizer is short, you still have to test
and debug it. One approach—not the one I recommend—is to charge ahead to Phase 2
and debug both phases together. That, however, is not how professional programmers
work. Once you have coded the TurtleTokenizer class, you really need to test it while
the code is fresh in your mind. What’s more, if you don’t already have code that tests the
class, you have to write a small program that makes sure that everything in your class is
working correctly.

As part of this assignment, you are required to create a new class (just use the New
function under the File menu and select the Class option) called TestTurtleTokenizer
that reads in lines of text and then uses the TurtleTokenizer class to print out the tokens
one per line. The output of your program should look like this:

You should use the TestTurtleTokenizer to test as many examples as you can to make
sure all the special cases are working. This sample run tests commands with no
separating spaces along with those that have them, commands without arguments like L
and commands that do like F120 or X4, and examples with nested braces.

Phase 2—Implement the execute method
Once you are satisfied that you have the TurtleTokenizer class working, you need to
turn your attention to the TurtleGraphics application itself. The starter file for the
application appears in Figure 4. The constructor begins by creating a GTurtle object. It
then creates an instance of a class called TurtleGraphicsUI, which is responsible for all
the user-interface activity: the buttons, the speed bar, the menus, and the program
window. You’ll have a chance to build your own user interface in Assignments #5 and
#6, but that work is done for you here. The only things you have to do are write the
bodies of the two missing methods, starting with the implementation of execute.

 – 8 –

Figure 4. The starter file for the TurtleGraphics application

 – 9 –

Figure 5. Useful methods in the GTurtle class

The GTurtle class is one of the subclasses of GObject, and is therefore similar in
some respects to the more familiar graphics classes like GRect, GOval, and GLine. The
GTurtle class, however, extends the standard behavior of the GObject class by adding
several methods designed to support the TurtleGraphics style of drawing used in this
assignment. You can find descriptions of the complete set of methods available for the
GTurtle class in the javadoc documentation for the ACM Java libraries. To make things
easier, I’ve included short descriptions of the methods you need for this assignment in
Figure 5.

The execute method has the responsibility of taking a string representing a turtle
program and translating that string into the appropriate method calls for the GTurtle
object. For example, given the program string

"F120 L90 F120 L90 F120 L90 F120 L90"

the execute method will have to

1. Divide the string into tokens using the TurtleTokenizer class.
2. Translate each token into the appropriate method call to the GTurtle object. Thus,

executing the F120 token needs to invoke the method call turtle.forward(120).
Similarly, executing the L90 token needs to invoke a call to turtle.left(90).

Your program is required to implement the command forms shown in Figure 6.

Figure 6. Required commands for the TurtleGraphics application

 – 10 –

The first five commands in Figure 6 have straightforward implementations. For the
F, L, and R commands, you have to check to see if the command letter is followed by an
integer. If so, you have to call Integer.parseInt on the string of digits to convert it
into an int value. If not, you have to choose the correct default value for the command
and use that value instead. The task of checking to see whether a token has an explicit
value and supplying a default value if it is missing occurs often enough that it makes
sense to define a helper method to accomplish this task. Once you have the argument
value, all you have to do is call the appropriate method on the GTurtle object, which is
stored in the instance variable turtle.

At first glance, it seems as if implementing the X command would be substantially
harder, but the difficulty goes away if you think about the problem creatively. Obtaining
the argument n uses the same helper method that you wrote for the F, L, and R commands.
Reading the block is also easy because the TurtleTokenizer class returns a string
enclosed in curly braces as a single token. Repeating an operation n times requires
nothing more than the classic for loop pattern. The only question is how to execute the
string of commands enclosed inside the curly braces. That task would be hard if you
started all over again and rewrote the code to execute a command string. The good news
is that you already have a method that executes a command string. It’s called execute.
To implement this part of the X command, all you have to do is take the curly braces
away from each end of the token and call execute on the string that sits between them.

Including a call to execute inside the definition of execute is an example of a
technique called recursion, which is the process of solving a problem by transforming it
into a simpler instance of the same problem type. I touched on recursion in the Karel
booklet, and you will see lots more of it if you continue on to CS 106B. I chose to
include it in this assignment because this particular application of recursion seems so
natural and straightforward. If you ignore for the moment how Java might implement
this technique and just write the call to execute in your implementation of the X
command, everything will just work. And when it does work, you may take away the
idea that this scary notion of recursion is not so hard after all.

As you implement the X command, there are a few additional requirements that you
should keep in mind:

• Your implementation should recognize command characters without regard to case.

Thus, the commands F120 and f120 should both move the turtle forward 120 pixels.
• Your code should ignore any command characters that it doesn’t recognize. Arguably,

it would be better to generate an error message when this occurs, but reporting those
errors to the user gets a bit tricky. Moreover, being able to include letters that don’t
stand for any operation but can nonetheless appear in search-and-replace operations
turns out to be useful in creating complex TurtleGraphics patterns.

Phase 3—Implement the replaceAction method
As you can see in Figure 2, the TurtleGraphicsUI class creates a control strip at the
bottom of the window that contains buttons to control the execution of the program and a
slider to adjust the speed. It also contains a Replace button that triggers a call to the

 – 11 –

replaceAction method in the TurtleGraphics application. The effect of that button is
to replace every instance of one string appearing in the program by a different string.
The first string is called the pattern, and the second is called the replacement. Both the
pattern and the replacement are entered in the text field to the right of the Replace button
in the form

pattern -> replacement

where the -> symbol used to indicate an arrow is composed of the characters - and >
written together. Whitespace characters should be ignored around the arrow or at the
beginning or end of the pattern and replacement strings, but not in their interiors.

As a simple example of how you might use the Replace button, suppose that you want
to double the size of the square drawn by the original version of the Square.t program,
which looks like this:

F120 L90 F120 L90 F120 L90 F120 L90

If you enter the string

F120 -> F240

in the text box and then click the Replace button, the application should change the
program to

F240 L90 F240 L90 F240 L90 F240 L90

which would indeed double the size.

To implement the replaceAction method, your program needs to communicate with
the user interface using the methods shown in Figure 7. The code for replaceAction
must call getReplacementField to get the contents of the text field, use string
operations to find the -> symbol and separate out the pattern and replacement fields, call
getProgramText to get the current text of the program, perform the replacement
operations, and finally call setProgramText to update the program.

Figure 7. Public methods in the TurtleGraphicsUI class

 – 12 –

The replaceAction method should replace every instance of the pattern string with
the replacement string in exactly the same way that replace-all operations work in a word
processor or program editor. The match may occur at any position in the string and pays
no attention to token boundaries. Thus, if you apply the replacement pattern

F1 -> F2

to the program

F120 L90 F120 L90 F120 L90 F120 L90

your program should produce the program

F220 L90 F220 L90 F220 L90 F220 L90

If you explore the documentation for Java’s String class, you’ll discover that the class
contains a replaceAll method that initially seems to do exactly what you want.
Unfortunately (at least for this assignment), the first argument to the built-in version of
replaceAll is not actually a string but something called a “regular expression.” In
regular expressions, the brace characters used for repetition (and the bracket characters
described in the list of extensions) are treated specially, which means that replacement
operations involving these characters would fail. What you therefore need to do is
implement your own version of the “replace-all” operation.

Drawing fractals
The simple example from the preceding section of doubling the size of a square only
scratches the surface of what you can do with the Replace button in the TurtleGrahpics
application. One of the most important advantages of representing turtle programs as
strings is that you can use repeated substitution to draw fractals, which are shapes that
incorporate the same basic structure at different scales. The word fractal was introduced
by the late Benoit Mandelbrot in his 1975 book The Fractal Geometry of Nature, which
generated considerable interest across a variety of fields.

To get a sense of the relationship between fractals and turtle graphics, consider the
program Triangle.t, which draws an equilateral triangle whose sides are 81 pixels long:

X3 {F81 L120}

This program causes the turtle to draw the following triangle on the screen:

The first step in turning this diagram into a fractal is to replace each of the lines in this
figure with one that contains an angular wedge. The turtle draws a single edge in the
original figure by moving forward 81 units. To create the first level in the fractal design,

 – 13 –

the turtle instead connects the same endpoints by executing the following four steps,
leading to the configuration shown on the right after each step:

1. Move forward one-third of the total distance, which in this

case means moving forward 27 pixels (81 divided by 3).

2. Turn 60˚ to the right and move forward 27 pixels.

3. Turn 120˚ back to the left and again move forward 27 pixels.

4. Turn 60˚ to the right and advance 27 pixels to reach the end.

If you perform this same transformation on all three sides of the triangle, you get the
following diagram, which is called a Koch snowflake after its inventor, the Swedish
mathematician Helge von Koch:

To create this diagram, all you have to do is make the following global replacement:

F81 -> F27 R60 F27 L120 F27 R60 F27

The figure is called a Koch snowflake of order 1 because it has undergone only one
such transformation. If you then activate the Replace button with the replacement string

F27 -> F9 R60 F9 L120 F9 R60 F9

you get the Koch snowflake of order 2:

Repeating this transformation yet again creates the order-3 snowflake shown in Figure 8.

 – 14 –

Figure 8. Screen shot showing the Koch snowflake of order 3

As you can see from Figure 8, the turtle program has become very long and complicated.
The good news is that nobody had to type that program in; all that the user needed to do
was enter the code for the original equilateral triangle and then apply a series of simple
transformations.

You can make similar fractal designs starting with other figures as well. For example,
if you apply the transformation

F120 -> F40 R90 F40 L90 F40 L90 F40 R90 F40

to the program that draws a 120-pixel square, you get the following diagram:

You can use the TurtleGraphics application to create most of the best-known fractal
designs. The programs folder in the starter project, for example, includes the code to

 – 15 –

draw the fractals you have seen earlier in this section, as well as one to draw the
following figure, which is called a Sierpinski triangle:

Be sure to play with some of these figures as you write your assignment. Not only will it
increase your fun, but you’ll also have a chance to win a special grand prize—that perfect
score on the final or any other single grade component—as described in Handout #34.

Error handling
One issue that has been ignored so far in this handout is the question of how your
program should handle errors. A significant part of most applications consists of
handling error conditions correctly. In the TurtleGraphics application, your code
should test for the following error conditions:

• If the TurtleTokenizer class tries to read a token that begins with a curly brace but

cannot find a matching close brace character, the tokenizer should report the error
"Missing closing brace".

• If the X command is not followed by a block token, your implementation of execute
should report the error "Missing command block".

• If the contents of the replacement field does not contain the substring "->", your
implementation of replaceAction should report the error "Missing ->".

In each of these cases, your program should report the error by including a line like

throw new ErrorException(message);

where message is the error message you want to display. The throw statement is part of
Java’s facilities for exception handling, which you will learn more about later in the
quarter.

It is useful to note at this point that your program should not report undefined
command letters as errors but should simply ignore such commands if they appear.

Extensions
There are many extensions that you could add to the program. Most of these take the
form of new commands. The starter file implements the extended set shown in Figure 9.

 – 16 –

Another useful extension is to change the implementation of replaceAction so that it
supports multiple substitutions. In the starter program, this feature is implemented by
allowing the replacement field to contain several individual substitution rules separated
by commas. Thus, the substitution

L -> R, R -> L

reverses the direction of every turn in the program, effectively creating a mirror image of
the original figure. It is important to note that these substitutions must be executed
simultaneously rather than sequentially. If you first replaced all occurrences of L with R
and then all occurrences of R with L, you would end up having only left turns in the
program.

Adding this extension to replaceAction allows the TurtleGraphics application to
implement Lindenmayer systems, which are defined by this ability to perform multiple
simultaneous substitutions. Named for the Hungarian biologist Aristid Lindenmayer
(1925–1989), these systems make it possible to generate fractal designs that model the
growth of plants, along with the classical fractal forms from mathematics. If you look up
the Wikipedia article on Lindenmayer systems, you will see many exciting examples of
these techniques.

Figure 9. Extended command set supported by the starter program

