ICS 4U – Team Project – Books, Ratings, Suggestions, and More!

 Teacher Supplement

This handout is intended to be used by teachers to assist with the delivery the sample ICS 4U Team project. A teacher may chose to paste some of this information into the student handout as is appropriate for the class.

Predicting User Preferences: The interesting part of the assignment

The component of this project that sets it apart from the implementation of a basic database is the ability of the program to make predictions about which other books a given user might like. Implementing this feature provides a wide range of opportunities for differentiated learning and a number of openings for discussing broader Computer Science concepts. In particular, it provides a hook to current research in artificial intelligence that could be explored by strong students. Below is an explanation of three different prediction algorithms.

Approach A: Basic

Let’s consider a user named Rabia. How is it that the program should predict other books Rabia might like? The simplest approach would be to make almost the same prediction for every customer. In this case the program would simply calculate the average rating for all the books in the database, sort the books by rating and then from that sorted list, suggest the top 5 books that Rabia hasn’t already rated.

Approach B: More Sophisticated

In Approach A, the only information unique to Rabia used by the prediction algorithm was whether or not Rabia had read a specific book. We could make a better prediction about what Rabia might like by considering her actual ratings in the past and how these ratings compare to the ratings given by other customers. Consider how you decide on movie recommendations from friends. If a friend tells you about a number of movies that s(he) enjoyed and you also enjoyed them, then when your friend recommends another movie that you have never seen, you probably are willing to go see it. On the other hand, if you and a different friend always tend to disagree about movies, you are not likely to go to see a movie this friend recommends.
The program can calculate how similar two users are by treating each of their ratings as a vector and calculating the dot product of these two vectors. You may have to remind (or even teach) students the definition of a dot product. It is just the sum of the products of each of the corresponding elements. Suppose we had 3 books in our data-base and Rabia rated them

[5,3,-5], Suelyn rated them [1,5,-3], Bob rated them [5,-3,5], and Kalid rated them [1, 3, 0].

The similarity between Rabia and Bob is calculated as: (5 X 5) + (3 X -3) + (-5 x 5) = 25 -9 -25 = -9

The similarity between Rabia and Suelyn is: (5x1) + (3x 5) + (-5x -3) = 5 + 15+ 15 = 35

The similarity between Rabia and Kalid is (5x1) + (3x3) + (-5x0) = 5 + 9 + 0 = 14

We see that if both people like a book (rating it with a positive number) it increases their similarity and if both people dislike a book (both giving it a negative number) it also increases their similarity.

Once you have calculated the pair-wise similarity between Rabia and every other customer, you can use the ratings of the user who is most similar to Rabia to make your sorted list. Then, you can use this list to make some recommendations to Rabia. In this case Rabia is most similar to Suelyn, so we would sort for the books according to Suelyn's ratings. Then we would recommend to Rabia the top books from Suelyn's list that Rabia hadn't already rated.

Approach C: Most Sophisticated

In Approach B, the algorithm used the ratings of every customer to calculate how similar Rabia is to every other user in the database and find the single user who is most similar to Rabia. Once the algorithm finds that Suelyn is the closest match to Rabia, it only uses Suelyn’s ratings to make suggestions for Rabia and doesn’t consider the ratings of anyone else at all. Wouldn’t it be more interesting to consider the ratings of a number of different people who are similar to Rabia? But how many and how much weight should we give to the different recommendations? Think again about the friends telling you about a movie you should see. If one friend Irfan (whose movie sense you tend to trust) tells you he hated a certain movie, but 5 other friends (whose movie sense you also trust) enjoyed the movie, you might decide to go see it. However, if you really trust Irfan’s judgement and you often don’t agree with the other 5 friends, that might change your opinion. The more you trust a person’s ratings, the more you will factor them into your final decision.

For this approach, your algorithm will look at every user and calculate how similar that person is to Rabia just as it did in Approach A. Then, it will calculate a final prediction rating for each book by weighting the ratings given by each user and according to how similar each user’s ratings are to Rabia’s.
Let’s look again at our example. The final rating of the books for Rabia is calculated as:

(Bob's ratings) X (Bob's similarity to Rabia) + (Kalid's ratings) X (Kalid's similarity to Rabia) + (Suelyn's ratings) X (Suelyn's similarity to Rabia)

= [5,-3,5] * x -9 + [1, 3, 0] x 14 + [1,5,-3] * 35

= [-45,27,-45] + [13,42,0] + [35,175,-105]

= [3,244,-150]

So we would recommend books to Rabia in the order book 2, book 1, and book 3. Of course, this doesn't make much sense since Rabia has already read all the books in our system. In order for the algorithm to work, the user has to have some books that they have not yet read.

Determining a Rating System

In the student handout, the rating system is not prescribed. Students are allowed to design their own system. It is likely that without guidance students will invent a scheme that uses only non-negative numbers. Many will propose using a scale of 0-5 or maybe 1-5 with 5 being “I really liked this” and 1 being “I didn’t like it”. They might then use 0 to be “I didn’t read this”. This is an obvious choice and will work sufficiently well for prediction Approach A (the basic one). Unfortunately, it won't work nearly as well if the student is calculating the similarity of two users using the dot product of rating vectors. A much better rating scheme would be something that uses both positive and negative ratings, centred around 0 but not using 0 for a rating itself. Zero is saved for indicating that this user hasn't rated this book.

Here is the example rating scheme used in the prediction example above:

-5 : Hated it!

-3 : Didn't like it

1 : ok – neither hot nor cold about it

3 : Liked it

5 : Really liked it!

0 : Didn't read it

If the student insists on using a strictly positive rating scheme, the similarity calculation can be adjusted to take this into account by shifting all the ratings to make the range centre around zero before taking the dot product. This also means a few extra conditional statements to consider the "Didn't read it" case and to avoid including this value in the similarity calculations. The ideal practice of using zero to indicate a book that wasn't read means the similarity calculation effectively ignores the rating of one user for any book that the other user hasn't read.

Notice that you may need to remind students that 0 isn’t really a rating so if the program calculates average ratings, the zeros themselves can be added into the total (since they have no effect) but the number of zeros isn’t part of the count.

Obtaining a Data Set

The predictions will work better with a reasonable amount of data. The examples shown above were intentionally very small but it would be much better to have a set of 50 or 100 books and have 50 people rate many of them.
But it can be a lot of work to collect this data. One option is to make the task of collecting the data part of an earlier assignment or change the team project to explicitly require students to run a partially completed version of their program to collect data from a number of their friends and classmates. The Phase 2 requirements were specifically arranged so that a program that has these features implemented could be used to collect data.

Another option is to provide the students with a pre-collected data set in a specified format. The disadvantage to this is that it limits the students' programs so that they are only about the type of data that you have already collected -- and it is a lot of work for you to collect data. To this end, we have already collected book rating data for you. It is available at:
http://www.cs.toronto.edu/~mcraig/ICS4U/BookRatingProject.html
This is a somewhat random collection of approximately 50 books that many teenagers have read and rated. If you want to use these files, please download them and make them available locally to your students. Of course, if you want to use this data, your students will have to use a compatible rating scheme and it will give you the opportunity to talk about the fact that programming with a file format that someone else created is a common challenge.
Connections to Real-World Problems and Computer Science Issues

One of the ideas in computer science is the concept of designing a simple but powerful model of a real-world object or concept. In this assignment, we model customers by their name and by a vector of ratings. Students will discover that using this model allows us to calculate the similarity between any two users and that once the pair-wise similarity for all combinations of users is determined, the contributions of each user can be weighted. This idea of weighting vectors from various sources according to some notion of the trustworthiness of each source, surfaces in many areas of computer science.

Another opportunity for discussing CS concepts and research comes from considering what it would take to really implement this system for Indigo. At the time of writing this handout, Indigo had over 900,000 books purchased but less than 300,000 ratings. They had over 25,000 users who had rated at least 1 product but on average each product had been rated by just over 3 customers. That means that most of the rating vectors are full of 0's. This is what is called "sparse data" and even our most sophisticated prediction algorithm would fail miserably on the calculating of user similarity. The discussion of the more advanced approaches is probably beyond the grasp of most students, but this assignment provides an opportunity to discuss the problems of sparse data.

Students might also be excited to know that making predictions about user preferences in real life is a very current research area in machine learning. In 2006, an online movie-rental company called Netflix offered one million dollars to anyone who could make their movie-prediction method 10% better. Students can read the contest details at www.netflixprize.com and see the size of the data sets. As of June 2009, it looks like an international team has achieved performance that may earn them the grand-prize.

Helping Students Manage the Development Process

The sample student handout suggests the following documents relating to the management of the software development process: a team contract, a team work breakdown plan, testing notes, an individual list of problems encountered and their solutions and a final reflection on the project management and the student's individual contribution. To meet the provincial curriculum expectations, your course must provide an opportunity for students to demonstrate the ability to manage the software development process and to use standard project management techniques. However, the specific documentation you require from your students is up to you.

Some experienced teachers have found it helpful to require students to submit a weekly work plan and progress report. Below are excerpts from student handouts that address the project management components. You may wish to modify and use different sections as is appropriate for the students in your classes.

A Team Contract

Write a team contract, worded so that each member is taking responsibility for the project. Define the team leader duties as well as team member duties with a list of consequences (reasonable, rational and business-like) for breaking the contract. Select a Team Leader who will be listed as such on the contract. Every group member must agree to the above and sign the Team Contract which will be handed in by the Team Leader. This contract is unchangeable and will be followed.

Weekly Planning Sheets and Logs
A weekly planning sheet must be created by each team member in consultation with the entire team. The planning sheet must be submitted each week indicating the: team name, project name, student names, task list for that week and projected time to be spent on each task (in hours).

An individual log book must be submitted each week end indicating the: team name, project name, student’s name, actual task list for that week from Monday to Friday, time spent on each task (in hours) - by day (Monday to Friday), each task must be marked as either completed (and signed off by other team members), or incomplete (with a rationale as to why it is not) and added to next week's task list.

Final Task Breakdown Report

A final report, including a task breakdown by each team member will, be submitted as part of the final submission. This report must be presented in the form of a chart (see below) and must include all team member contributions.

	TASK
	TIME ALLOCATED
	TIME SPENT
	COMPLETED (Y/N)
	SIGNATURES

	
	
	
	
	

Team members together must assign the percentage weight for each task and sign for acceptance. All are responsible for the planning and designing of this project.

Resource Supports for Teaching with Windows

The following resource links are provided by experienced teachers who use Java in a Windows environment for the Team project. You should check the links before providing them to your students since they may no longer be current.

Create Installation Programs http://www.setupfactory.net/site/index.php

Create CHM Files

http://www.easyhelpweb.com/
http://www.helpsmith.com/htmlhelp.php
http://freeware.brothersoft.com
http://www.gold-software.com/download1508.html
http://www.shareware-catalog.com/web-developer-download-c10-21.htm
How to create CHM files

http://office.microsoft.com/en-us/orkXP/HA011362731033.aspx
Creating Exe Files

Create a .jar file or a .zip file of your entire program and first then go to http://jsmooth.sourceforge.net/

