
Sliding blocks puzzle solver

Mike Clancy

U.C. Berkeley

CS Division

The assignment

! Write a program to solve sliding blocks

puzzles.

! Example: Take over the human part of
http://www.puzzleworld.org/Slidin

gBlockPuzzles/pennant.htm



Framework of “try” procedure

! If current configuration is the goal, then return
success; if current configuration has been
seen before, then return failure.

! Register current configuration as seen.

! For each possible move, call “try” with the
configuration that results from making that
move:
! If success, return success.

! Return failure.

Grading

! Solution is run on easy puzzles.

! Iff it solves them, it is run on hard

puzzles.

! Total points =

! if easy puzzles solved, then

score for easy puzzles + score for hard

puzzles

! else score for easy puzzles only.



Use

! End-of-term project in U.C. Berkeley

CS 2 (handed out four weeks prior to

due date)

! Most solutions are ~1000 lines of Java

code.

! Easily configurable for less ambitious

courses (even a CS 1 with backtracking

search)

Niftiness (1)

! Accommodates fast computers

! Encourages incremental development and
modular design (make it work correctly before
making it work efficiently)

! Has a large solution space; some efficiency
constraints conflict with others

! Provides challenge for hotshots

! Is accompanied by lots of infrastructure

! Can be straightforwardly tweaked to counter
possible cheating



Niftiness (2)

! Students like it!


