The Somewhat Simplified Solitaire Algorithm

Lester I. McCann mccann@cs.arizona.edu

Computer Science Department The University of Arizona Tucson, AZ

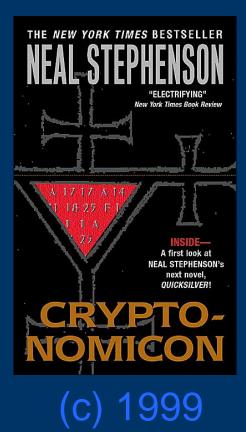
ACM SIGCSE Nifty Assignments Panel March 4, 2006

SIGCSE 2006 – p.1/21

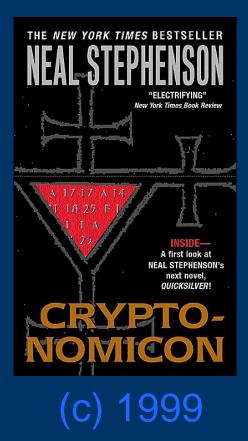
Who Is This Guy?

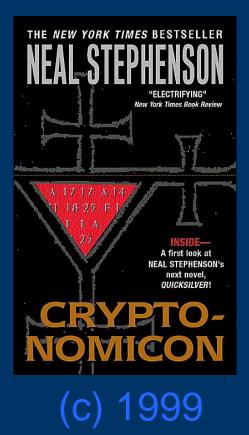


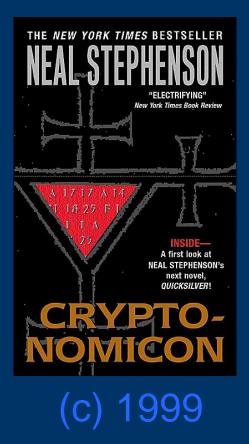
Who Is This Guy?



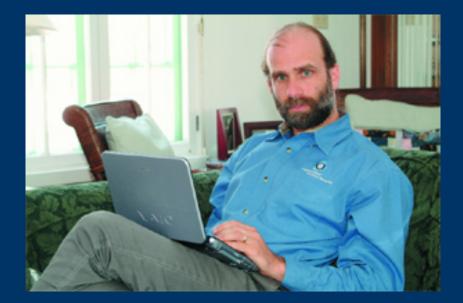
Best-selling Author Neal Stephenson http://www.nealstephenson.com


What Has He Written?


(among others)


A Combination of Historical & Modern-Day Fiction

- A Combination of Historical & Modern-Day Fiction
- Threads Joined By Cryptography



- A Combination of Historical & Modern-Day Fiction
- Threads Joined By Cryptography
- And After ~ 800 pages . . .

- A Combination of Historical & Modern-Day Fiction
- Threads Joined By Cryptography
- And After ~ 800 pages . . .
- ... The Pontifex Transform Is Used

Pontifex == **Solitaire**

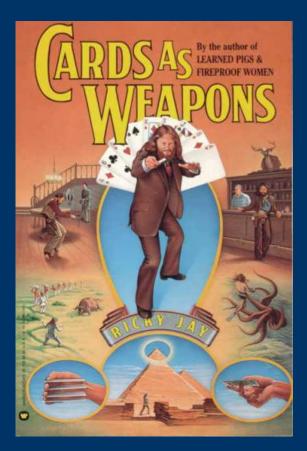
www.schneier.com

- In reality, Pontifex is really security expert Bruce Schneier's Solitaire cryptosystem.
- Schneier describes it in Cryptonomicon's appendix

Solitaire? A Cryptosystem??

Solitaire? A Cryptosystem??

No, not that Solitaire ...

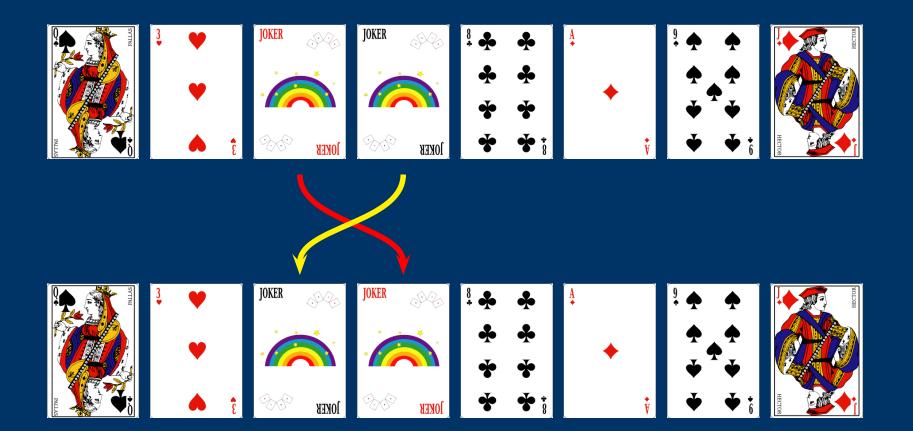

Bruce Schneier's Solitaire

 So named because it is based on manipulations of playing cards

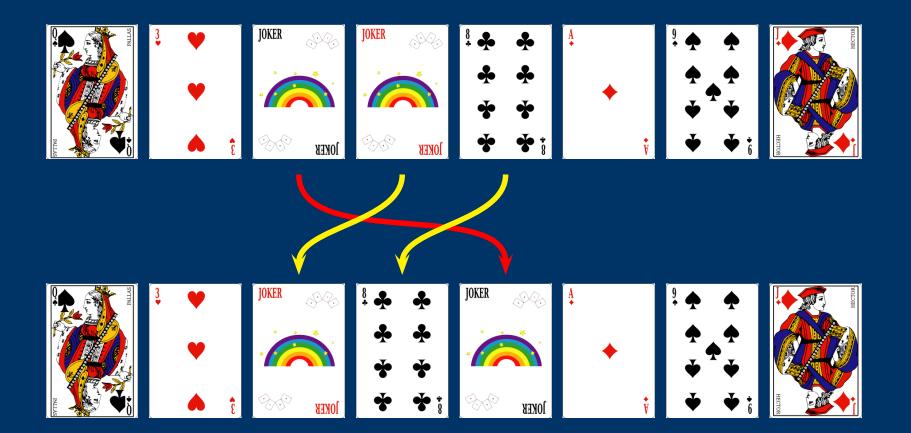
Bruce Schneier's Solitaire

- So named because it is based on manipulations of playing cards
 - Who would question an ordinary deck of cards?

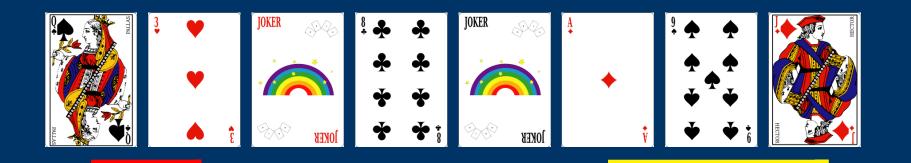
As Tested on MythBusters!

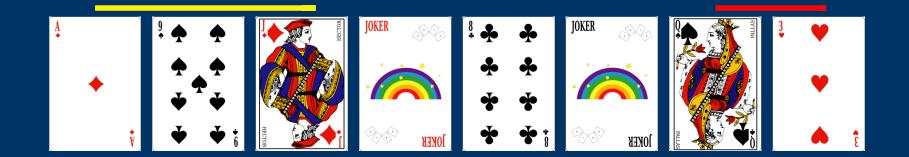

by Ricky Jay, (c) 1977

Bruce Schneier's Solitaire

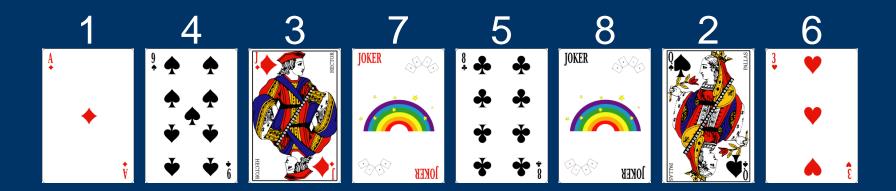

- So named because it is based on manipulations of playing cards
 - Who would question an ordinary deck of cards?
 - ... OK, we'll ignore that.

Bruce Schneier's Solitaire


- So named because it is based on manipulations of playing cards
 - Who would question an ordinary deck of cards?
 ...OK, we'll ignore that.
- Sender and Receiver begin with matched decks
- Each application of Solitaire generates a sequence of keystream values in the range [1..26]
- Roughly:
 - Plaintext + keystream = Ciphertext
 - Ciphertext keystream = Plaintext



Step 1: Exchange 'A' Joker with Following Card



Step 2: Exchange 'B' Joker with Following Two Cards

Step 3: "Triple Cut"

Step 4: Needs More Words Than I Have Space!

Step 5:

· · · · · · ·

SIGCSE 2006 - p.14/21

Step 5: 1st Card's Value

SIGCSE 2006 - p.14/21

Step 5: 1st Card's Value + 1 \Rightarrow Index

Step 5: 1st Card's Value + 1 \Rightarrow Index \Rightarrow Keystream Value = 4

Encryption

Plaintext:	N		F	T	Y
	\Downarrow	\downarrow	\downarrow	\downarrow	\downarrow
Letter Values:	14	9	6	20	25
Keystream Sequence:	4	2	4	1	5
Sums:	18	11	10	21	30
Wrap:	18	11	10	21	4
	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
Ciphertext:	R	K	J	Т	D

Decryption

Ciphertext: R K J D Letter Values: 18 11 10 21 4 **Keystream Sequence:** 4 2 5 4 1 20 14 Differences: 9 -1 6 Wrap: 9 14 6 20 25 Т **Plaintext:** F Ν

- Schneier has links to implementations in \sim 12 languages

- Schneier has links to implementations in \sim 12 languages
- My Standard Adjustments:
 - Steps 1 and 2: No special bottom-of-deck behavior
 - · Have students assume that the deck is circular

- Schneier has links to implementations in \sim 12 languages
- My Standard Adjustments:
 - Steps 1 and 2: No special bottom-of-deck behavior
 - Have students assume that the deck is circular
 - Use a different deck; for example:
 - Half-deck (only two suits)
 - Pinochle deck (need to add jokers)

- Schneier has links to implementations in \sim 12 languages
- My Standard Adjustments:
 - Steps 1 and 2: No special bottom-of-deck behavior
 - Have students assume that the deck is circular
 - Use a different deck; for example:
 - Half-deck (only two suits)
 - Pinochle deck (need to add jokers)
 - ⇒ Unwise cryptographically ... but so what?

Adoption Issues

- Skill Prerequisites:
 - List Manipulation
 - Char $\Leftrightarrow \dot{A}SCII$
 - Text File I/O (?)

Adoption Issues

- Skill Prerequisites:
 - List Manipulation
 - \circ Char \Leftrightarrow ASCII
 - Text File I/O (?)
- Implementation Decisions
 - Arrays or Linked Lists?
 - Card Representation?
 - Must state be retained?
 - Entire cryptosystem or just components?

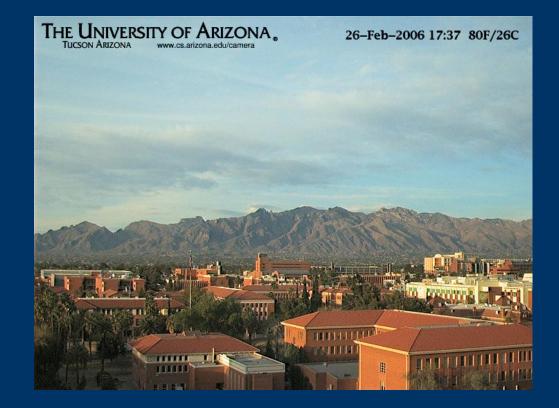
Adoption Issues

- Skill Prerequisites:
 - List Manipulation
 - \circ Char \Leftrightarrow ASCII
 - Text File I/O (?)
- Implementation Decisions
 - Arrays or Linked Lists?
 - Card Representation?
 - Must state be retained?
 - Entire cryptosystem or just components?
- ... Applicable to CS0, CS1, CS2, and even CS7.

So Why Is This "Nifty"?

- Flexible Can assign entire system or just parts
- Provides a gentle introduction to cryptosystems
- Encourages distributed testing (message exchange)
- Would be a fun algorithm to animate

So Why Is This "Nifty"?


- Flexible Can assign entire system or just parts
- Provides a gentle introduction to cryptosystems
- Encourages distributed testing (message exchange)
- Would be a fun algorithm to animate

Just might encourage students to read a novel!

Image Credits

- Neal Stephenson: Bela Bollobas
- Bruce Schneier: dk.compulenta.ru
- Stephenson book covers: barnesandnoble.com
- Klondike: AisleRot 2.10.0 / Jonathan Blandford
- Cards As Weapons: amazon.com
- Card Images: david.bellot.free.fr
- UA Campus: The UA Computer Science Webcam

Any Questions?

mccann@cs.arizona.edu

These full-screen PDF slides were created in LATEX using the prosper class.