
The Somewhat Simplified Solitaire Encryption Algorithm

Overview:

In Neal Stephenson’s novel Cryptonomicon, two of the main characters are able to covertly communicate
with one another with a deck of playing cards (including the jokers) and knowledge of the Solitaire encryption
algorithm, which was created (in real life) by Bruce Schneier. The novel includes the description of the Solitaire
algorithm in an appendix, but you can also find a revised version on the web (see below). For this assignment,
we’ll simplify the algorithm in several ways. For example, we’ll be assuming that we have just two suits (say,
hearts and spades) from a deck of cards, plus the two jokers, just to keep things simple. Further, let’s assume
that the values of the 26 suit cards are 1 to 26 (Ace to King of hearts, followed by Ace to King of spades),
that the “A” joker is 27, and that the “B” joker is 28. Thus, 15 represents the 2 of spades. Now that you’ve
got the idea, note that because we are doing this in a computer, we can just use the numbers 1–28 and forget
about the suits and ranks.

The hard part of Solitaire is the generation of the keystream values. (They will be used to encrypt or decrypt
our messages.) Here are the steps used in our variant of the algorithm, assuming that we start with a list of
the values from 1–28 as described above:

1. Find the A joker (27). Exchange it with the card beneath (after) it in the deck, to move the card down
the deck by one position. (What if the joker is the last card in the deck? Imagine that the deck of cards
is continuous; the card following the bottom card is the top card of the deck, and you’d just exchange
them.)

2. Find the B joker (28). Move it two cards down by performing two exchanges.
3. Swap the cards above the first joker (the one closest to the top of the deck) with the cards below the

second joker. This is called a triple cut.
4. Take the bottom card from the deck. Count down from the top card by a quantity of cards equal to the

value of that bottom card. (If the bottom card is a joker, let its value be 27, regardless of which joker it
is.) Take that group of cards and move them to the bottom of the deck. Return the bottom card to the
bottom of the deck.

5. (Last step!) Look at the top card’s value (which is again 1-27, as it was in the previous step). Put the
card back on top of the deck. Count down the deck by that many cards. Record the value of the NEXT
card in the deck, but don’t remove it from the deck. If that next card happens to be a joker, don’t record
anything. Leave the deck the way it is, and start again from the first step, repeating until that next card
is not a joker.

The value that you recorded in the last step is one value of the keystream, and will be in the range 1 – 26,
inclusive (to match with the number of letters in the alphabet). To generate another value, we take the deck
as it is after the last step and repeat the algorithm. We need to generate as many keystream values as there
are letters in the message being encrypted or decrypted.



As usual, an example will really help make sense of the algorithm. Let’s say that this is the original ordering
of our half–deck of cards:

1 4 7 10 13 16 19 22 25 28 3 6 9 12 15 18 21 24 27 2 5 8 11 14 17 20 23 26

Step 1: Swap 27 with the value following it. So, we swap 27 and 2:

1 4 7 10 13 16 19 22 25 28 3 6 9 12 15 18 21 24 2 27 5 8 11 14 17 20 23 26

^^^^

Step 2: Move 28 two places down the list. It ends up between 6 and 9:

1 4 7 10 13 16 19 22 25 3 6 28 9 12 15 18 21 24 2 27 5 8 11 14 17 20 23 26

^^^^^^

Step 3: Do the triple cut. Everything above the first joker (28 in this case) goes to the bottom of the deck,
and everything below the second (27) goes to the top:

5 8 11 14 17 20 23 26 28 9 12 15 18 21 24 2 27 1 4 7 10 13 16 19 22 25 3 6

^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^^^

Step 4: The bottom card is 6. The first 6 cards of the deck are 5, 8, 11, 14, 17, and 20. They go just ahead of
6 at the bottom end of the deck:

23 26 28 9 12 15 18 21 24 2 27 1 4 7 10 13 16 19 22 25 3 5 8 11 14 17 20 6

^^^^^^^^^^^^^^^

Step 5: The top card is 23. Thus, our generated keystream value is the 24 th card, which is 11.

Self Test: What is the next keystream value? The answer is provided at the end of this document.

OK, so what do you do with all of those keystream values? The answer depends on whether you are encoding
a message or decoding one.

To encode a message with Solitaire, remove all non–letters and convert any lower–case letters to upper–case.
(If you wanted to be in line with traditional cryptographic practice, you’d also divide the letters into groups of
five.) Convert the letters to numbers (A=1, B=2, etc.). Use Solitaire to generate the same number of values
as are in the message. Add the corresponding pairs of numbers, modulo 26. Convert the numbers back to
letters, and you’re done.

Decryption is just the reverse of encryption. Start by converting the message to be decoded to numbers. Using
the same card ordering as was used to encrypt the message originally, generate enough keystream values.
(Because the same starting deck of cards was used, the same keystream will be generated.) Subtract the
keystream values from the message numbers, again modulo 26. Finally, convert the numbers to letters and
read the message.

Let’s give it a try. The message to be sent is this:

Dr. McCann is insane!

Removing the non-letters and capitalizing gives us:

DRMCCANNISINSANE

The message has 16 letters, and 16 is not a multiple of 5. So, we’ll pad out the message with X’s. Next,
convert the letters to numbers:

D R M C C A N N I S I N S A N E X X X X

4 18 13 3 3 1 14 14 9 19 9 14 19 1 14 5 24 24 24 24



Rather than actually generating a sequence of 20 keystream values for this example, let’s just pretend that we
did:

21 6 2 19 15 18 12 23 23 5 1 7 14 6 13 1 26 16 12 20

Just add the two groups together pairwise. To get the modulo 26: If the sum of a pair is greater than 26, just
subtract 26 from it. For example, 14 + 12 = 26, but 14 + 23 = 37 - 26 = 11. (Note that this isn’t quite the
result that the operator % would give you in Java.)

4 18 13 3 3 1 14 14 9 19 9 14 19 1 14 5 24 24 24 24

+ 21 6 2 19 15 18 12 23 23 5 1 7 14 6 13 1 26 16 12 20

---------------------------------------------------------------

25 24 15 22 18 19 26 11 6 24 10 21 7 7 1 6 24 14 10 18

And convert back to letters:

YXOVRSZKFXJUGGAFXNJR

Here’s how the recipient would decrypt this message. Convert the encrypted message’s letters to numbers,
generate the same keystream (by starting with the same deck ordering as was used for the encryption), and
subtract the keystream values from the message numbers. To deal with the modulo 26 this time, just add 26
to the top number if it is equal to or smaller than the bottom number.

25 24 15 22 18 19 26 11 6 24 10 21 7 7 1 6 24 14 10 18

- 21 6 2 19 15 18 12 23 23 5 1 7 14 6 13 1 26 16 12 20

---------------------------------------------------------------

4 18 13 3 3 1 14 14 9 19 9 14 19 1 14 5 24 24 24 24

Finally, convert the numbers to letters, and viola: Another accurate medical diagnosis!

4 18 13 3 3 1 14 14 9 19 9 14 19 1 14 5 24 24 24 24

D R M C C A N N I S I N S A N E X X X X

Assignment: Write a complete, well–documented, and suitably object–oriented program that reads in a ‘deck’
of 28 numbers from a file, asks the user for one or more messages to decrypt, and decrypts them using the
modified Solitaire algorithm described above. Note that if your program is decrypting multiple messages, all
but the first should be decrypted using the deck as it exists after the decryption of the previous message. (The
first uses the deck provided, of course.)

Output: Your output will be just the decrypted messages — lists of characters without spaces or punctuation.

Want to Learn More?

• The original Solitaire algorithm is described on this web page:
http://www.schneier.com/solitaire.html.



Other Requirements and Hints:

• Start early! There are lots of little things that need to be done to write this program. You may not be
able to complete all of them if you wait to start until after I release the official data.

• Make sure that you understand our modified Solitaire algorithm before you start writing the program;
you can’t write a program to solve a problem you don’t understand.

• Don’t try to write the whole program at once; start small. For example, you’re going to have to read the
initial deck from the data file and store it into an array. Write that method and test it. Then move on.

• You can check your program’s work by hand. Take the data file, manually generate the first few keystream
letters, and check that your program generated the same ones.

• Create some encrypted messages for your program to decrypt. The easiest way to do this? Write an
encoding method for your program! It’s not too hard. (But, I’ll probably give the class a sample
encrypted message or two in a few days.)

• Exchange encrypted messages with your classmates. Why? If you only test with your own encryption
and decryption routines, any logical error with the algorithm implementation is likely to appear in both
routines. Without independent verification, you may think that your logically–flawed code is correct.

Answer to the Self Test: After Step 1:

23 26 28 9 12 15 18 21 24 2 1 27 4 7 10 13 16 19 22 25 3 5 8 11 14 17 20 6

After Step 2:

23 26 9 12 28 15 18 21 24 2 1 27 4 7 10 13 16 19 22 25 3 5 8 11 14 17 20 6

After Step 3:

4 7 10 13 16 19 22 25 3 5 8 11 14 17 20 6 28 15 18 21 24 2 1 27 23 26 9 12

After Step 4:

14 17 20 6 28 15 18 21 24 2 1 27 23 26 9 4 7 10 13 16 19 22 25 3 5 8 11 12

After Step 5:

The deck is the same as it was after step 4. The 15 th card, the next keystream value, is 9.


