University of Washington, Tacoma

TCSS 343: Mathematical Principles of Computing II

Homework #2 (Programming Project): Digital Signatures, Font Files, and Recursion
Due: Wednesday, April 16, 2003, 4:15pm

Spring 2003

April 7, 2003

Written homework is due at the beginning of class on the day specified. Any homework turned in after the deadline will be considered late. Late homework policy: Late homework will not be accepted on this programming project.
Learning Objectives
· Introduction to basic cryptography concepts

· Greater familiarity with recursion

· More practice with debugging and constructing good test cases

Digital Signatures: A Crash Course

Digital signatures can be used to authenticate the source of digital media. Here is how it works. If you create a file, and you want to convince someone that the bits in that file were untampered from time you created it to the time the other person received it, then you can digitally sign the file. To digitally sign a file, you need to have something called a one-way hash function and a key that is associated with you (and only you).

A one-way hash function is a function that is easy to compute, but very difficult to reverse. For example, the function f(n) = 2n is not a one-way function because it is easy to compute its inverse. However, there are many functions that are believed to be very difficult to invert. Such functions are used for cryptographic schemes and for hashing passwords.

You apply the one-way function and your key to the bits of the file. This is the digital signature, and it is attached to the file (or sent separately). The receiver applies the same hash function and key to the received file and sees if the value computed is the same as the signature. If they match, then the file was not tampered with after it was signed. If they don't match, then either the file was tampered with or the signature was tampered with – in either case, the content of the file cannot be trusted.

Note that it is vitally important in this scheme that the key be a shared secret between sender and receiver. If a third party were to discover this key and intercept the communication between sender and receiver, then the third party could change the file, compute the hash function using the key and send the tampered file and the new signature to the receiver, who would not be able to know that the file had been tampered with. Such an attack on security is sometimes called a person in the middle attack.

In a public key encryption scheme, every user has a public key and a private key. Digital signatures are created using the private key (which no one but the sender should ever know) and are verified by others using the public key (available to everyone, including potential attackers). Thanks to some rather beautiful mathematics, such a scheme exists.

What is described above is sometimes called a flat file scheme for signing a file. If any part of the file or signature is tampered with, then it will be discovered by the receiver when verifying the signature.

TrueType Font Files

A TrueType font, which can be found on just about any operating system, contains information about how to draw (or render) each glyph in a set of characters. For example, there is a font file for the Times New Roman font that contains information about how to draw each character in that font. Each font has a separate font file.

If you create a Word file, chances are that you will use fonts that nearly everyone else in the world has. For example, Times New Roman is on every Windows system. However, if you decide to use some unusual font, then what you typically do is embed the font file that you used into the Word document itself. When you send your Word document to someone, they will have the information needed to draw the intended font, even though they might not have that font file on their machine.

One problem with embedding a font file in a document is that font files can be pretty large. Font files for Far Eastern languages (such as Japanese or Chinese) can have several thousand glyphs and be as large as several megabytes. It would be a waste of network bandwidth to embed a 2MB font file in a 50KB Word document. One solution to this is what is called subsetting. When a font file is embedded in a Word document, it is determined which glyphs are actually used in the Word document and the embedded font file is modified to include the information only on those glyphs used in the document. Since the typical document uses only a small fraction of the total number of glyphs possible in a font, this can drastically reduce the space used by the embedded font.

Subsetting and Digital Signatures
Now suppose we want to digitally sign font files, so that the user of a font file can be sure that it came from a legitimate source. The flat file scheme works fine, except that when the font file is subsetted for embedding purposes, the signature will be broken because the file has been modified. The font file could be resigned by the original signer, but the typical situation is as follows. Microsoft signs the Times New Roman font file, you create a Word document that uses Times New Roman, but you want to embed it in a document, which will break the signature. Microsoft doesn't want to resign it, and you don't have Microsoft's key to resign it.

One possibility is that instead of signing the entire font file, Microsoft could sign each glyph, so that if any are removed, then the remaining glyphs will still have their signatures, each of which would be verified by the receiver. Unfortunately, each signature takes a few kilobytes, and so the original Far Eastern font file would need to have several megabytes of digital signatures in it!

The solution is to use what is called an authentication tree to sign and verify a digital signature. Associated with each glyph in the font file is some data. That data is hashed. If there are n glyphs, let us label them 0 through n-1. Let hi, i be the hash value associated with glyph i. Now that we have computed the hash values for each glyph, we construct a binary tree of hash values, using the previously computed hash values. For example, if there were 8 glyphs, we compute the following tree of hash values:

For example, the hash value h2, 3 is computed from the values h2, 2 and h3, 3.

Once the hash value of the root, h0, n-1, is computed, that value is signed using the key. The resulting value is placed into the digital signature. To verify the signature, the receiver goes through exactly the same computations to generate the hash values of every node in the authentication tree. After computing h0, n-1, the receiver applies the key to it and compares the result to the signature. If they are the same, then the signature is valid. Otherwise, the signature is not valid and the contents of the file cannot be trusted.

So far, there is no advantage to the authentication tree scheme over the flat file signing scheme. The advantage comes when you subset a font file. In the above example, suppose you wanted to keep just glyph 0 and glyph 1 in the subsetted file. Then the subsetted file should contain the data for glyphs 0 and 1, of course, but it also needs to contain enough information to compute h0, 7. What is that information? h2, 3 and h4, 7. Note that with the glyph data for glyphs 0 and 1 and the hash values h2, 3 and h4, 7, there is enough information for the receiver to compute h0, 7 and verify the signature. So, the subsetted font file needs to contain these extra hash values (in addition to the original signature). On average, only about log n extra hash values need to be stored in the subsetted font (How many are needed in the worst case?)

A complication occurs when the number of glyphs in the file is not a power of two. For example, if there are 5 glyphs, the authentication tree would look like this:

The way to deal with this is that any hash values for "missing" nodes is just 0. So, the value of h5, 5 , h6, 6 , h7, 7 , and h6, 7 is 0.

The Project
In this project, the problem of signing, verifying, and subsetting a font file has been simplified greatly. A simplified font file has the following format:

1. The first line of the file contains the number of glyphs in the original file. Call that number n.

2. The next n lines (or fewer than n, if the font file is a subsetted file) in the font file should each contain a pair of integers. The first integer is the glyph number, and the second integer is the data associated with the glyph. The glyph numbers should be increasing in the file. In a subsetted font, not all glyphs will be present.

3. If the file is signed, then the next line after the last glyph should consist of the string "***". The lines in the file after the "***" contain some number of hash values, followed by (on the very last line) the signed root.

(In reality, a font file is much more complicated than this, but the essential components for an assignment like this are all here. The other simplifying aspects of this project are that the hash and signing functions are not really cryptographically strong. In reality, we would use SHA or some other algorithm that is hard to invert.)

In order to do subsetting, there needs to be another file that lists all the glyphs that you should keep. It consists of one integer per line, where each integer represents a glyph number that is to be kept in the subset. The glyph numbers should be increasing in the file. (See the sample subset files.)

The signing and verification code is provided for you. Your task is to write a recursive method to take a simplified font file and a file that specifies which glyphs to keep and create a file with the appropriate glyph data and additional hash values to another file.

Warning: Do not underestimate the difficulty of this assignment. Although there is only about 100 or 200 lines of code you need to write, the recursion can be very tricky. Only if you get it just right will it work. There are many subtleties associated with the assignment that are not mentioned in this project description.
Starter Code and Some Test Files
Here is the java code to start with:

FontFileHandler.java FontFileTokenizer.java
Here are the test files associated with the test() method in the FontFileHandler class:

test.txt test-signed.txt test-signed-subset.txt test-signed-subset-subset.txt subset.txt subset2.txt
You should generate your own test cases (especially if you change hashA, hashB, and hashMerge) and test them on the supplied code and your code.

Software Engineering
For debugging purposes, it might be wise to change the variables hashA, hashB, and hashMerge to simpler values (such as 1, 0, and 1, respectively). There are some System.out.println statements that have been commented, but might be useful in your debugging. (These are the print statements I used when I was debugging.)

What to Turn In
· Electronically turn in your modified FontFileHandler.java file. The only method you should modify is hashNodeSubset.

· Electronically turn in two test cases, where you started with a legal font file, signed it, verified it, and then subsetted it according to some subset file. Your test cases should illustrate that your algorithm works, and that the subsetted file was verified.

· Please Zip your code with the test cases into one file and e-mail it.

· Also, turn in a printout of your code, preferably of just the hashNodeSubset method.

· Finally, turn in a report (at most one or two pages) that described how you approached the problem, what troubles you had, and what you learned.

Bonus Exercises
This assignment will be graded on a scale of 40 points. Here are some more challenging exercises.

1. (5 points) Alter you code so that the subset file can specify ranges of glyphs (not just a list of glyphs) to keep. In other words, subset.txt could have 1 and 4 on a line, which means that when subsetting, glyphs 1, 2, 3, and 4 should be kept.

2. (5 points) What alterations can be made to the font file that can "trick" the verify method? That is, the file is modified from its original form, but the verify method returns true. Here are two obvious ways to modify the file and still pass the verifier: add whitespace between tokens (this works because StreamTokenizer ignores whitespace), or use real numbers instead of integers, such as 14.0 instead of 14 (this works because, again, StreamTokenizer reads in real numbers, not integers). Try to discover any other security leaks in the code provided. You should assume that you do not know the key that was used to sign the file, but you do have access to the hash functions (that is, the sign and verify code is available to you).

h4, 4

h3, 3

h2, 2

h7, 7

h6, 6

h5, 5

h4, 4

h3, 3

h2, 2

h1, 1

h0, 0

h6, 7

h4, 5

h2, 3

h0, 1

h4, 7

h0, 3

h0, 7

h1, 1

h0, 0

h4, 5

h2, 3

h0, 1

h4, 7

h0, 3

h0, 7

